Metamath Proof Explorer


Theorem en2top

Description: If a topology has two elements, it is the indiscrete topology. (Contributed by FL, 11-Aug-2008) (Revised by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion en2top J TopOn X J 2 𝑜 J = X X

Proof

Step Hyp Ref Expression
1 simpr J TopOn X J 2 𝑜 J 2 𝑜
2 toponss J TopOn X x J x X
3 2 ad2ant2rl J TopOn X J 2 𝑜 X = x J x X
4 simprl J TopOn X J 2 𝑜 X = x J X =
5 sseq0 x X X = x =
6 3 4 5 syl2anc J TopOn X J 2 𝑜 X = x J x =
7 velsn x x =
8 6 7 sylibr J TopOn X J 2 𝑜 X = x J x
9 8 expr J TopOn X J 2 𝑜 X = x J x
10 9 ssrdv J TopOn X J 2 𝑜 X = J
11 topontop J TopOn X J Top
12 0opn J Top J
13 11 12 syl J TopOn X J
14 13 ad2antrr J TopOn X J 2 𝑜 X = J
15 14 snssd J TopOn X J 2 𝑜 X = J
16 10 15 eqssd J TopOn X J 2 𝑜 X = J =
17 0ex V
18 17 ensn1 1 𝑜
19 16 18 eqbrtrdi J TopOn X J 2 𝑜 X = J 1 𝑜
20 19 olcd J TopOn X J 2 𝑜 X = J = J 1 𝑜
21 sdom2en01 J 2 𝑜 J = J 1 𝑜
22 20 21 sylibr J TopOn X J 2 𝑜 X = J 2 𝑜
23 sdomnen J 2 𝑜 ¬ J 2 𝑜
24 22 23 syl J TopOn X J 2 𝑜 X = ¬ J 2 𝑜
25 24 ex J TopOn X J 2 𝑜 X = ¬ J 2 𝑜
26 25 necon2ad J TopOn X J 2 𝑜 J 2 𝑜 X
27 1 26 mpd J TopOn X J 2 𝑜 X
28 27 necomd J TopOn X J 2 𝑜 X
29 13 adantr J TopOn X J 2 𝑜 J
30 toponmax J TopOn X X J
31 30 adantr J TopOn X J 2 𝑜 X J
32 en2eqpr J 2 𝑜 J X J X J = X
33 1 29 31 32 syl3anc J TopOn X J 2 𝑜 X J = X
34 28 33 mpd J TopOn X J 2 𝑜 J = X
35 34 27 jca J TopOn X J 2 𝑜 J = X X
36 simprl J TopOn X J = X X J = X
37 simprr J TopOn X J = X X X
38 37 necomd J TopOn X J = X X X
39 pr2nelem V X J X X 2 𝑜
40 17 30 38 39 mp3an2ani J TopOn X J = X X X 2 𝑜
41 36 40 eqbrtrd J TopOn X J = X X J 2 𝑜
42 35 41 impbida J TopOn X J 2 𝑜 J = X X