Metamath Proof Explorer


Theorem endisj

Description: Any two sets are equinumerous to two disjoint sets. Exercise 4.39 of Mendelson p. 255. (Contributed by NM, 16-Apr-2004)

Ref Expression
Hypotheses endisj.1 AV
endisj.2 BV
Assertion endisj xyxAyBxy=

Proof

Step Hyp Ref Expression
1 endisj.1 AV
2 endisj.2 BV
3 0ex V
4 1 3 xpsnen A×A
5 1oex 1𝑜V
6 2 5 xpsnen B×1𝑜B
7 4 6 pm3.2i A×AB×1𝑜B
8 xp01disj A×B×1𝑜=
9 p0ex V
10 1 9 xpex A×V
11 snex 1𝑜V
12 2 11 xpex B×1𝑜V
13 breq1 x=A×xAA×A
14 breq1 y=B×1𝑜yBB×1𝑜B
15 13 14 bi2anan9 x=A×y=B×1𝑜xAyBA×AB×1𝑜B
16 ineq12 x=A×y=B×1𝑜xy=A×B×1𝑜
17 16 eqeq1d x=A×y=B×1𝑜xy=A×B×1𝑜=
18 15 17 anbi12d x=A×y=B×1𝑜xAyBxy=A×AB×1𝑜BA×B×1𝑜=
19 10 12 18 spc2ev A×AB×1𝑜BA×B×1𝑜=xyxAyBxy=
20 7 8 19 mp2an xyxAyBxy=