Description: Any two sets are equinumerous to two disjoint sets. Exercise 4.39 of Mendelson p. 255. (Contributed by NM, 16-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | endisj.1 | |
|
endisj.2 | |
||
Assertion | endisj | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endisj.1 | |
|
2 | endisj.2 | |
|
3 | 0ex | |
|
4 | 1 3 | xpsnen | |
5 | 1oex | |
|
6 | 2 5 | xpsnen | |
7 | 4 6 | pm3.2i | |
8 | xp01disj | |
|
9 | p0ex | |
|
10 | 1 9 | xpex | |
11 | snex | |
|
12 | 2 11 | xpex | |
13 | breq1 | |
|
14 | breq1 | |
|
15 | 13 14 | bi2anan9 | |
16 | ineq12 | |
|
17 | 16 | eqeq1d | |
18 | 15 17 | anbi12d | |
19 | 10 12 18 | spc2ev | |
20 | 7 8 19 | mp2an | |