Metamath Proof Explorer


Theorem eqfnfv3

Description: Derive equality of functions from equality of their values. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion eqfnfv3 FFnAGFnBF=GBAxAxBFx=Gx

Proof

Step Hyp Ref Expression
1 eqfnfv2 FFnAGFnBF=GA=BxAFx=Gx
2 eqss A=BABBA
3 2 biancomi A=BBAAB
4 3 anbi1i A=BxAFx=GxBAABxAFx=Gx
5 anass BAABxAFx=GxBAABxAFx=Gx
6 dfss3 ABxAxB
7 6 anbi1i ABxAFx=GxxAxBxAFx=Gx
8 r19.26 xAxBFx=GxxAxBxAFx=Gx
9 7 8 bitr4i ABxAFx=GxxAxBFx=Gx
10 9 anbi2i BAABxAFx=GxBAxAxBFx=Gx
11 4 5 10 3bitri A=BxAFx=GxBAxAxBFx=Gx
12 1 11 bitrdi FFnAGFnBF=GBAxAxBFx=Gx