Metamath Proof Explorer


Theorem eqlkr4

Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 4-Feb-2015)

Ref Expression
Hypotheses eqlkr4.s S=ScalarW
eqlkr4.r R=BaseS
eqlkr4.f F=LFnlW
eqlkr4.k K=LKerW
eqlkr4.d D=LDualW
eqlkr4.t ·˙=D
eqlkr4.w φWLVec
eqlkr4.g φGF
eqlkr4.h φHF
eqlkr4.e φKG=KH
Assertion eqlkr4 φrRH=r·˙G

Proof

Step Hyp Ref Expression
1 eqlkr4.s S=ScalarW
2 eqlkr4.r R=BaseS
3 eqlkr4.f F=LFnlW
4 eqlkr4.k K=LKerW
5 eqlkr4.d D=LDualW
6 eqlkr4.t ·˙=D
7 eqlkr4.w φWLVec
8 eqlkr4.g φGF
9 eqlkr4.h φHF
10 eqlkr4.e φKG=KH
11 eqid S=S
12 eqid BaseW=BaseW
13 1 2 11 12 3 4 eqlkr2 WLVecGFHFKG=KHrRH=GSfBaseW×r
14 7 8 9 10 13 syl121anc φrRH=GSfBaseW×r
15 7 adantr φrRWLVec
16 simpr φrRrR
17 8 adantr φrRGF
18 3 12 1 2 11 5 6 15 16 17 ldualvs φrRr·˙G=GSfBaseW×r
19 18 eqeq2d φrRH=r·˙GH=GSfBaseW×r
20 19 rexbidva φrRH=r·˙GrRH=GSfBaseW×r
21 14 20 mpbird φrRH=r·˙G