Metamath Proof Explorer


Theorem equivbnd

Description: If the metric M is "strongly finer" than N (meaning that there is a positive real constant R such that N ( x , y ) <_ R x. M ( x , y ) ), then boundedness of M implies boundedness of N . (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015)

Ref Expression
Hypotheses equivbnd.1 φMBndX
equivbnd.2 φNMetX
equivbnd.3 φR+
equivbnd.4 φxXyXxNyRxMy
Assertion equivbnd φNBndX

Proof

Step Hyp Ref Expression
1 equivbnd.1 φMBndX
2 equivbnd.2 φNMetX
3 equivbnd.3 φR+
4 equivbnd.4 φxXyXxNyRxMy
5 isbnd3b MBndXMMetXrxXyXxMyr
6 5 simprbi MBndXrxXyXxMyr
7 1 6 syl φrxXyXxMyr
8 3 rpred φR
9 remulcl RrRr
10 8 9 sylan φrRr
11 bndmet MBndXMMetX
12 1 11 syl φMMetX
13 12 adantr φrMMetX
14 metcl MMetXxXyXxMy
15 14 3expb MMetXxXyXxMy
16 13 15 sylan φrxXyXxMy
17 simplr φrxXyXr
18 3 ad2antrr φrxXyXR+
19 16 17 18 lemul2d φrxXyXxMyrRxMyRr
20 4 adantlr φrxXyXxNyRxMy
21 2 adantr φrNMetX
22 metcl NMetXxXyXxNy
23 22 3expb NMetXxXyXxNy
24 21 23 sylan φrxXyXxNy
25 8 ad2antrr φrxXyXR
26 25 16 remulcld φrxXyXRxMy
27 10 adantr φrxXyXRr
28 letr xNyRxMyRrxNyRxMyRxMyRrxNyRr
29 24 26 27 28 syl3anc φrxXyXxNyRxMyRxMyRrxNyRr
30 20 29 mpand φrxXyXRxMyRrxNyRr
31 19 30 sylbid φrxXyXxMyrxNyRr
32 31 ralimdvva φrxXyXxMyrxXyXxNyRr
33 breq2 s=RrxNysxNyRr
34 33 2ralbidv s=RrxXyXxNysxXyXxNyRr
35 34 rspcev RrxXyXxNyRrsxXyXxNys
36 10 32 35 syl6an φrxXyXxMyrsxXyXxNys
37 36 rexlimdva φrxXyXxMyrsxXyXxNys
38 7 37 mpd φsxXyXxNys
39 isbnd3b NBndXNMetXsxXyXxNys
40 2 38 39 sylanbrc φNBndX