Description: If the metric M is "strongly finer" than N (meaning that there is a positive real constant R such that N ( x , y ) <_ R x. M ( x , y ) ), then boundedness of M implies boundedness of N . (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | equivbnd.1 | |
|
equivbnd.2 | |
||
equivbnd.3 | |
||
equivbnd.4 | |
||
Assertion | equivbnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equivbnd.1 | |
|
2 | equivbnd.2 | |
|
3 | equivbnd.3 | |
|
4 | equivbnd.4 | |
|
5 | isbnd3b | |
|
6 | 5 | simprbi | |
7 | 1 6 | syl | |
8 | 3 | rpred | |
9 | remulcl | |
|
10 | 8 9 | sylan | |
11 | bndmet | |
|
12 | 1 11 | syl | |
13 | 12 | adantr | |
14 | metcl | |
|
15 | 14 | 3expb | |
16 | 13 15 | sylan | |
17 | simplr | |
|
18 | 3 | ad2antrr | |
19 | 16 17 18 | lemul2d | |
20 | 4 | adantlr | |
21 | 2 | adantr | |
22 | metcl | |
|
23 | 22 | 3expb | |
24 | 21 23 | sylan | |
25 | 8 | ad2antrr | |
26 | 25 16 | remulcld | |
27 | 10 | adantr | |
28 | letr | |
|
29 | 24 26 27 28 | syl3anc | |
30 | 20 29 | mpand | |
31 | 19 30 | sylbid | |
32 | 31 | ralimdvva | |
33 | breq2 | |
|
34 | 33 | 2ralbidv | |
35 | 34 | rspcev | |
36 | 10 32 35 | syl6an | |
37 | 36 | rexlimdva | |
38 | 7 37 | mpd | |
39 | isbnd3b | |
|
40 | 2 38 39 | sylanbrc | |