| Step | Hyp | Ref | Expression | 
						
							| 1 |  | equivbnd.1 |  | 
						
							| 2 |  | equivbnd.2 |  | 
						
							| 3 |  | equivbnd.3 |  | 
						
							| 4 |  | equivbnd.4 |  | 
						
							| 5 |  | isbnd3b |  | 
						
							| 6 | 5 | simprbi |  | 
						
							| 7 | 1 6 | syl |  | 
						
							| 8 | 3 | rpred |  | 
						
							| 9 |  | remulcl |  | 
						
							| 10 | 8 9 | sylan |  | 
						
							| 11 |  | bndmet |  | 
						
							| 12 | 1 11 | syl |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 |  | metcl |  | 
						
							| 15 | 14 | 3expb |  | 
						
							| 16 | 13 15 | sylan |  | 
						
							| 17 |  | simplr |  | 
						
							| 18 | 3 | ad2antrr |  | 
						
							| 19 | 16 17 18 | lemul2d |  | 
						
							| 20 | 4 | adantlr |  | 
						
							| 21 | 2 | adantr |  | 
						
							| 22 |  | metcl |  | 
						
							| 23 | 22 | 3expb |  | 
						
							| 24 | 21 23 | sylan |  | 
						
							| 25 | 8 | ad2antrr |  | 
						
							| 26 | 25 16 | remulcld |  | 
						
							| 27 | 10 | adantr |  | 
						
							| 28 |  | letr |  | 
						
							| 29 | 24 26 27 28 | syl3anc |  | 
						
							| 30 | 20 29 | mpand |  | 
						
							| 31 | 19 30 | sylbid |  | 
						
							| 32 | 31 | ralimdvva |  | 
						
							| 33 |  | breq2 |  | 
						
							| 34 | 33 | 2ralbidv |  | 
						
							| 35 | 34 | rspcev |  | 
						
							| 36 | 10 32 35 | syl6an |  | 
						
							| 37 | 36 | rexlimdva |  | 
						
							| 38 | 7 37 | mpd |  | 
						
							| 39 |  | isbnd3b |  | 
						
							| 40 | 2 38 39 | sylanbrc |  |