Metamath Proof Explorer


Theorem eqvrelcoss

Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 4-Jul-2020) (Revised by Peter Mazsa, 20-Dec-2021)

Ref Expression
Assertion eqvrelcoss EqvRelRTrRelR

Proof

Step Hyp Ref Expression
1 df-eqvrel EqvRelRRefRelRSymRelRTrRelR
2 refrelcoss RefRelR
3 symrelcoss SymRelR
4 2 3 triantru3 TrRelRRefRelRSymRelRTrRelR
5 1 4 bitr4i EqvRelRTrRelR