Metamath Proof Explorer


Theorem erdszelem11

Description: Lemma for erdsze . (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses erdsze.n φN
erdsze.f φF:1N1-1
erdszelem.i I=x1Nsup.y𝒫1x|FyIsom<,<yFyxy<
erdszelem.j J=x1Nsup.y𝒫1x|FyIsom<,<-1yFyxy<
erdszelem.t T=n1NInJn
erdszelem.r φR
erdszelem.s φS
erdszelem.m φR1S1<N
Assertion erdszelem11 φs𝒫1NRsFsIsom<,<sFsSsFsIsom<,<-1sFs

Proof

Step Hyp Ref Expression
1 erdsze.n φN
2 erdsze.f φF:1N1-1
3 erdszelem.i I=x1Nsup.y𝒫1x|FyIsom<,<yFyxy<
4 erdszelem.j J=x1Nsup.y𝒫1x|FyIsom<,<-1yFyxy<
5 erdszelem.t T=n1NInJn
6 erdszelem.r φR
7 erdszelem.s φS
8 erdszelem.m φR1S1<N
9 1 2 3 4 5 6 7 8 erdszelem10 φm1N¬Im1R1¬Jm1S1
10 1 adantr φm1N¬Im1R1N
11 2 adantr φm1N¬Im1R1F:1N1-1
12 ltso <Or
13 simprl φm1N¬Im1R1m1N
14 6 adantr φm1N¬Im1R1R
15 simprr φm1N¬Im1R1¬Im1R1
16 10 11 3 12 13 14 15 erdszelem7 φm1N¬Im1R1s𝒫1NRsFsIsom<,<sFs
17 16 expr φm1N¬Im1R1s𝒫1NRsFsIsom<,<sFs
18 1 adantr φm1N¬Jm1S1N
19 2 adantr φm1N¬Jm1S1F:1N1-1
20 gtso <-1Or
21 simprl φm1N¬Jm1S1m1N
22 7 adantr φm1N¬Jm1S1S
23 simprr φm1N¬Jm1S1¬Jm1S1
24 18 19 4 20 21 22 23 erdszelem7 φm1N¬Jm1S1s𝒫1NSsFsIsom<,<-1sFs
25 24 expr φm1N¬Jm1S1s𝒫1NSsFsIsom<,<-1sFs
26 17 25 orim12d φm1N¬Im1R1¬Jm1S1s𝒫1NRsFsIsom<,<sFss𝒫1NSsFsIsom<,<-1sFs
27 26 rexlimdva φm1N¬Im1R1¬Jm1S1s𝒫1NRsFsIsom<,<sFss𝒫1NSsFsIsom<,<-1sFs
28 9 27 mpd φs𝒫1NRsFsIsom<,<sFss𝒫1NSsFsIsom<,<-1sFs
29 r19.43 s𝒫1NRsFsIsom<,<sFsSsFsIsom<,<-1sFss𝒫1NRsFsIsom<,<sFss𝒫1NSsFsIsom<,<-1sFs
30 28 29 sylibr φs𝒫1NRsFsIsom<,<sFsSsFsIsom<,<-1sFs