Metamath Proof Explorer


Theorem erngset-rN

Description: The division ring on trace-preserving endomorphisms for a fiducial co-atom W . (Contributed by NM, 5-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses erngset.h-r H = LHyp K
erngset.t-r T = LTrn K W
erngset.e-r E = TEndo K W
erngset.d-r D = EDRing R K W
Assertion erngset-rN K V W H D = Base ndx E + ndx s E , t E f T s f t f ndx s E , t E t s

Proof

Step Hyp Ref Expression
1 erngset.h-r H = LHyp K
2 erngset.t-r T = LTrn K W
3 erngset.e-r E = TEndo K W
4 erngset.d-r D = EDRing R K W
5 1 erngfset-rN K V EDRing R K = w H Base ndx TEndo K w + ndx s TEndo K w , t TEndo K w f LTrn K w s f t f ndx s TEndo K w , t TEndo K w t s
6 5 fveq1d K V EDRing R K W = w H Base ndx TEndo K w + ndx s TEndo K w , t TEndo K w f LTrn K w s f t f ndx s TEndo K w , t TEndo K w t s W
7 4 6 eqtrid K V D = w H Base ndx TEndo K w + ndx s TEndo K w , t TEndo K w f LTrn K w s f t f ndx s TEndo K w , t TEndo K w t s W
8 fveq2 w = W TEndo K w = TEndo K W
9 8 opeq2d w = W Base ndx TEndo K w = Base ndx TEndo K W
10 tpeq1 Base ndx TEndo K w = Base ndx TEndo K W Base ndx TEndo K w + ndx s TEndo K w , t TEndo K w f LTrn K w s f t f ndx s TEndo K w , t TEndo K w t s = Base ndx TEndo K W + ndx s TEndo K w , t TEndo K w f LTrn K w s f t f ndx s TEndo K w , t TEndo K w t s
11 3 opeq2i Base ndx E = Base ndx TEndo K W
12 tpeq1 Base ndx E = Base ndx TEndo K W Base ndx E + ndx s TEndo K w , t TEndo K w f LTrn K w s f t f ndx s TEndo K w , t TEndo K w t s = Base ndx TEndo K W + ndx s TEndo K w , t TEndo K w f LTrn K w s f t f ndx s TEndo K w , t TEndo K w t s
13 11 12 ax-mp Base ndx E + ndx s TEndo K w , t TEndo K w f LTrn K w s f t f ndx s TEndo K w , t TEndo K w t s = Base ndx TEndo K W + ndx s TEndo K w , t TEndo K w f LTrn K w s f t f ndx s TEndo K w , t TEndo K w t s
14 10 13 eqtr4di Base ndx TEndo K w = Base ndx TEndo K W Base ndx TEndo K w + ndx s TEndo K w , t TEndo K w f LTrn K w s f t f ndx s TEndo K w , t TEndo K w t s = Base ndx E + ndx s TEndo K w , t TEndo K w f LTrn K w s f t f ndx s TEndo K w , t TEndo K w t s
15 9 14 syl w = W Base ndx TEndo K w + ndx s TEndo K w , t TEndo K w f LTrn K w s f t f ndx s TEndo K w , t TEndo K w t s = Base ndx E + ndx s TEndo K w , t TEndo K w f LTrn K w s f t f ndx s TEndo K w , t TEndo K w t s
16 8 3 eqtr4di w = W TEndo K w = E
17 fveq2 w = W LTrn K w = LTrn K W
18 17 2 eqtr4di w = W LTrn K w = T
19 eqidd w = W s f t f = s f t f
20 18 19 mpteq12dv w = W f LTrn K w s f t f = f T s f t f
21 16 16 20 mpoeq123dv w = W s TEndo K w , t TEndo K w f LTrn K w s f t f = s E , t E f T s f t f
22 21 opeq2d w = W + ndx s TEndo K w , t TEndo K w f LTrn K w s f t f = + ndx s E , t E f T s f t f
23 22 tpeq2d w = W Base ndx E + ndx s TEndo K w , t TEndo K w f LTrn K w s f t f ndx s TEndo K w , t TEndo K w t s = Base ndx E + ndx s E , t E f T s f t f ndx s TEndo K w , t TEndo K w t s
24 eqidd w = W t s = t s
25 16 16 24 mpoeq123dv w = W s TEndo K w , t TEndo K w t s = s E , t E t s
26 25 opeq2d w = W ndx s TEndo K w , t TEndo K w t s = ndx s E , t E t s
27 26 tpeq3d w = W Base ndx E + ndx s E , t E f T s f t f ndx s TEndo K w , t TEndo K w t s = Base ndx E + ndx s E , t E f T s f t f ndx s E , t E t s
28 15 23 27 3eqtrd w = W Base ndx TEndo K w + ndx s TEndo K w , t TEndo K w f LTrn K w s f t f ndx s TEndo K w , t TEndo K w t s = Base ndx E + ndx s E , t E f T s f t f ndx s E , t E t s
29 eqid w H Base ndx TEndo K w + ndx s TEndo K w , t TEndo K w f LTrn K w s f t f ndx s TEndo K w , t TEndo K w t s = w H Base ndx TEndo K w + ndx s TEndo K w , t TEndo K w f LTrn K w s f t f ndx s TEndo K w , t TEndo K w t s
30 tpex Base ndx E + ndx s E , t E f T s f t f ndx s E , t E t s V
31 28 29 30 fvmpt W H w H Base ndx TEndo K w + ndx s TEndo K w , t TEndo K w f LTrn K w s f t f ndx s TEndo K w , t TEndo K w t s W = Base ndx E + ndx s E , t E f T s f t f ndx s E , t E t s
32 7 31 sylan9eq K V W H D = Base ndx E + ndx s E , t E f T s f t f ndx s E , t E t s