| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erth.1 |  | 
						
							| 2 |  | erth.2 |  | 
						
							| 3 | 1 | ersymb |  | 
						
							| 4 | 3 | biimpa |  | 
						
							| 5 | 1 | ertr |  | 
						
							| 6 | 5 | impl |  | 
						
							| 7 | 4 6 | syldanl |  | 
						
							| 8 | 1 | ertr |  | 
						
							| 9 | 8 | impl |  | 
						
							| 10 | 7 9 | impbida |  | 
						
							| 11 |  | vex |  | 
						
							| 12 | 2 | adantr |  | 
						
							| 13 |  | elecg |  | 
						
							| 14 | 11 12 13 | sylancr |  | 
						
							| 15 |  | errel |  | 
						
							| 16 | 1 15 | syl |  | 
						
							| 17 |  | brrelex2 |  | 
						
							| 18 | 16 17 | sylan |  | 
						
							| 19 |  | elecg |  | 
						
							| 20 | 11 18 19 | sylancr |  | 
						
							| 21 | 10 14 20 | 3bitr4d |  | 
						
							| 22 | 21 | eqrdv |  | 
						
							| 23 | 1 | adantr |  | 
						
							| 24 | 1 2 | erref |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 | 2 | adantr |  | 
						
							| 27 |  | elecg |  | 
						
							| 28 | 26 26 27 | syl2anc |  | 
						
							| 29 | 25 28 | mpbird |  | 
						
							| 30 |  | simpr |  | 
						
							| 31 | 29 30 | eleqtrd |  | 
						
							| 32 | 23 30 | ereldm |  | 
						
							| 33 | 26 32 | mpbid |  | 
						
							| 34 |  | elecg |  | 
						
							| 35 | 26 33 34 | syl2anc |  | 
						
							| 36 | 31 35 | mpbid |  | 
						
							| 37 | 23 36 | ersym |  | 
						
							| 38 | 22 37 | impbida |  |