Metamath Proof Explorer


Theorem estrchomfeqhom

Description: The functionalized Hom-set operation equals the Hom-set operation in the category of extensible structures (in a universe). (Contributed by AV, 8-Mar-2020)

Ref Expression
Hypotheses estrchomfn.c C=ExtStrCatU
estrchomfn.u φUV
estrchomfn.h H=HomC
Assertion estrchomfeqhom φHom𝑓C=H

Proof

Step Hyp Ref Expression
1 estrchomfn.c C=ExtStrCatU
2 estrchomfn.u φUV
3 estrchomfn.h H=HomC
4 1 2 3 estrchomfn φHFnU×U
5 1 2 estrcbas φU=BaseC
6 5 eqcomd φBaseC=U
7 6 sqxpeqd φBaseC×BaseC=U×U
8 7 fneq2d φHFnBaseC×BaseCHFnU×U
9 4 8 mpbird φHFnBaseC×BaseC
10 eqid Hom𝑓C=Hom𝑓C
11 eqid BaseC=BaseC
12 10 11 3 fnhomeqhomf HFnBaseC×BaseCHom𝑓C=H
13 9 12 syl φHom𝑓C=H