Metamath Proof Explorer


Theorem esumid

Description: Identify the extended sum as any limit points of the infinite sum. (Contributed by Thierry Arnoux, 9-May-2017)

Ref Expression
Hypotheses esumid.p k φ
esumid.0 _ k A
esumid.1 φ A V
esumid.2 φ k A B 0 +∞
esumid.3 φ C 𝑠 * 𝑠 0 +∞ tsums k A B
Assertion esumid φ * k A B = C

Proof

Step Hyp Ref Expression
1 esumid.p k φ
2 esumid.0 _ k A
3 esumid.1 φ A V
4 esumid.2 φ k A B 0 +∞
5 esumid.3 φ C 𝑠 * 𝑠 0 +∞ tsums k A B
6 df-esum * k A B = 𝑠 * 𝑠 0 +∞ tsums k A B
7 eqid 𝑠 * 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞
8 nfcv _ k 0 +∞
9 eqid k A B = k A B
10 1 2 8 4 9 fmptdF φ k A B : A 0 +∞
11 7 3 10 5 xrge0tsmseq φ C = 𝑠 * 𝑠 0 +∞ tsums k A B
12 6 11 eqtr4id φ * k A B = C