Metamath Proof Explorer


Theorem esumid

Description: Identify the extended sum as any limit points of the infinite sum. (Contributed by Thierry Arnoux, 9-May-2017)

Ref Expression
Hypotheses esumid.p kφ
esumid.0 _kA
esumid.1 φAV
esumid.2 φkAB0+∞
esumid.3 φC𝑠*𝑠0+∞tsumskAB
Assertion esumid φ*kAB=C

Proof

Step Hyp Ref Expression
1 esumid.p kφ
2 esumid.0 _kA
3 esumid.1 φAV
4 esumid.2 φkAB0+∞
5 esumid.3 φC𝑠*𝑠0+∞tsumskAB
6 df-esum *kAB=𝑠*𝑠0+∞tsumskAB
7 eqid 𝑠*𝑠0+∞=𝑠*𝑠0+∞
8 nfcv _k0+∞
9 eqid kAB=kAB
10 1 2 8 4 9 fmptdF φkAB:A0+∞
11 7 3 10 5 xrge0tsmseq φC=𝑠*𝑠0+∞tsumskAB
12 6 11 eqtr4id φ*kAB=C