Metamath Proof Explorer


Theorem etasslt2

Description: A version of etasslt with fewer hypotheses but a weaker upper bound. (Contributed by Scott Fenton, 10-Dec-2021)

Ref Expression
Assertion etasslt2 A s B x No A s x x s B bday x suc bday A B

Proof

Step Hyp Ref Expression
1 bdayfun Fun bday
2 ssltex1 A s B A V
3 ssltex2 A s B B V
4 unexg A V B V A B V
5 2 3 4 syl2anc A s B A B V
6 funimaexg Fun bday A B V bday A B V
7 1 5 6 sylancr A s B bday A B V
8 7 uniexd A s B bday A B V
9 imassrn bday A B ran bday
10 bdayrn ran bday = On
11 9 10 sseqtri bday A B On
12 ssorduni bday A B On Ord bday A B
13 11 12 ax-mp Ord bday A B
14 elon2 bday A B On Ord bday A B bday A B V
15 13 14 mpbiran bday A B On bday A B V
16 8 15 sylibr A s B bday A B On
17 sucelon bday A B On suc bday A B On
18 16 17 sylib A s B suc bday A B On
19 onsucuni bday A B On bday A B suc bday A B
20 11 19 mp1i A s B bday A B suc bday A B
21 etasslt A s B suc bday A B On bday A B suc bday A B x No A s x x s B bday x suc bday A B
22 18 20 21 mpd3an23 A s B x No A s x x s B bday x suc bday A B