Metamath Proof Explorer


Theorem eu6lem

Description: Lemma of eu6im . A dissection of an idiom characterizing existential uniqueness. (Contributed by NM, 12-Aug-1993) This used to be the definition of the unique existential quantifier, while df-eu was then proved as dfeu . (Revised by BJ, 30-Sep-2022) (Proof shortened by Wolf Lammen, 3-Jan-2023) Extract common proof lines. (Revised by Wolf Lammen, 3-Mar-2023)

Ref Expression
Assertion eu6lem y x φ x = y y x x = y φ z x φ x = z

Proof

Step Hyp Ref Expression
1 19.42v z x φ x = y y = z x φ x = y z y = z
2 alsyl x x = y φ x φ x = z x x = y x = z
3 equvelv x x = y x = z y = z
4 2 3 sylib x x = y φ x φ x = z y = z
5 4 pm4.71i x x = y φ x φ x = z x x = y φ x φ x = z y = z
6 albiim x φ x = y x φ x = y x x = y φ
7 6 biancomi x φ x = y x x = y φ x φ x = y
8 equequ2 y = z x = y x = z
9 8 imbi2d y = z φ x = y φ x = z
10 9 albidv y = z x φ x = y x φ x = z
11 10 anbi2d y = z x x = y φ x φ x = y x x = y φ x φ x = z
12 7 11 bitrid y = z x φ x = y x x = y φ x φ x = z
13 12 pm5.32ri x φ x = y y = z x x = y φ x φ x = z y = z
14 5 13 bitr4i x x = y φ x φ x = z x φ x = y y = z
15 14 exbii z x x = y φ x φ x = z z x φ x = y y = z
16 ax6evr z y = z
17 16 biantru x φ x = y x φ x = y z y = z
18 1 15 17 3bitr4ri x φ x = y z x x = y φ x φ x = z
19 18 exbii y x φ x = y y z x x = y φ x φ x = z
20 exdistrv y z x x = y φ x φ x = z y x x = y φ z x φ x = z
21 19 20 bitri y x φ x = y y x x = y φ z x φ x = z