Metamath Proof Explorer


Theorem eufnfv

Description: A function is uniquely determined by its values. (Contributed by NM, 31-Aug-2011)

Ref Expression
Hypotheses eufnfv.1 AV
eufnfv.2 BV
Assertion eufnfv ∃!ffFnAxAfx=B

Proof

Step Hyp Ref Expression
1 eufnfv.1 AV
2 eufnfv.2 BV
3 1 mptex xABV
4 eqeq2 z=xABf=zf=xAB
5 4 bibi2d z=xABfFnAxAfx=Bf=zfFnAxAfx=Bf=xAB
6 5 albidv z=xABffFnAxAfx=Bf=zffFnAxAfx=Bf=xAB
7 3 6 spcev ffFnAxAfx=Bf=xABzffFnAxAfx=Bf=z
8 eqid xAB=xAB
9 2 8 fnmpti xABFnA
10 fneq1 f=xABfFnAxABFnA
11 9 10 mpbiri f=xABfFnA
12 11 pm4.71ri f=xABfFnAf=xAB
13 dffn5 fFnAf=xAfx
14 eqeq1 f=xAfxf=xABxAfx=xAB
15 13 14 sylbi fFnAf=xABxAfx=xAB
16 fvex fxV
17 16 rgenw xAfxV
18 mpteqb xAfxVxAfx=xABxAfx=B
19 17 18 ax-mp xAfx=xABxAfx=B
20 15 19 bitrdi fFnAf=xABxAfx=B
21 20 pm5.32i fFnAf=xABfFnAxAfx=B
22 12 21 bitr2i fFnAxAfx=Bf=xAB
23 7 22 mpg zffFnAxAfx=Bf=z
24 eu6 ∃!ffFnAxAfx=BzffFnAxAfx=Bf=z
25 23 24 mpbir ∃!ffFnAxAfx=B