Metamath Proof Explorer


Theorem evl0

Description: The zero polynomial evaluates to zero. (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses evl0.q Q=IevalR
evl0.b B=BaseR
evl0.w W=ImPolyR
evl0.o O=0R
evl0.0 0˙=0W
evl0.i φIV
evl0.r φRCRing
Assertion evl0 φQ0˙=BI×O

Proof

Step Hyp Ref Expression
1 evl0.q Q=IevalR
2 evl0.b B=BaseR
3 evl0.w W=ImPolyR
4 evl0.o O=0R
5 evl0.0 0˙=0W
6 evl0.i φIV
7 evl0.r φRCRing
8 eqid algScW=algScW
9 7 crngringd φRRing
10 3 8 4 5 6 9 mplascl0 φalgScWO=0˙
11 10 fveq2d φQalgScWO=Q0˙
12 2 4 ring0cl RRingOB
13 9 12 syl φOB
14 1 3 2 8 6 7 13 evlsca φQalgScWO=BI×O
15 11 14 eqtr3d φQ0˙=BI×O