Metamath Proof Explorer


Theorem evl0

Description: The zero polynomial evaluates to zero. (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses evl0.q Q = I eval R
evl0.b B = Base R
evl0.w W = I mPoly R
evl0.o O = 0 R
evl0.0 0 ˙ = 0 W
evl0.i φ I V
evl0.r φ R CRing
Assertion evl0 φ Q 0 ˙ = B I × O

Proof

Step Hyp Ref Expression
1 evl0.q Q = I eval R
2 evl0.b B = Base R
3 evl0.w W = I mPoly R
4 evl0.o O = 0 R
5 evl0.0 0 ˙ = 0 W
6 evl0.i φ I V
7 evl0.r φ R CRing
8 eqid algSc W = algSc W
9 3 8 4 5 6 7 mplascl0 φ algSc W O = 0 ˙
10 9 fveq2d φ Q algSc W O = Q 0 ˙
11 7 crngringd φ R Ring
12 2 4 ring0cl R Ring O B
13 11 12 syl φ O B
14 1 3 2 8 6 7 13 evlsca φ Q algSc W O = B I × O
15 10 14 eqtr3d φ Q 0 ˙ = B I × O