Metamath Proof Explorer


Theorem evl1scad

Description: Polynomial evaluation builder for scalars. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses evl1sca.o O=eval1R
evl1sca.p P=Poly1R
evl1sca.b B=BaseR
evl1sca.a A=algScP
evl1scad.u U=BaseP
evl1scad.1 φRCRing
evl1scad.2 φXB
evl1scad.3 φYB
Assertion evl1scad φAXUOAXY=X

Proof

Step Hyp Ref Expression
1 evl1sca.o O=eval1R
2 evl1sca.p P=Poly1R
3 evl1sca.b B=BaseR
4 evl1sca.a A=algScP
5 evl1scad.u U=BaseP
6 evl1scad.1 φRCRing
7 evl1scad.2 φXB
8 evl1scad.3 φYB
9 crngring RCRingRRing
10 2 4 3 5 ply1sclf RRingA:BU
11 6 9 10 3syl φA:BU
12 11 7 ffvelcdmd φAXU
13 1 2 3 4 evl1sca RCRingXBOAX=B×X
14 6 7 13 syl2anc φOAX=B×X
15 14 fveq1d φOAXY=B×XY
16 fvconst2g XBYBB×XY=X
17 7 8 16 syl2anc φB×XY=X
18 15 17 eqtrd φOAXY=X
19 12 18 jca φAXUOAXY=X