Metamath Proof Explorer


Theorem evlscl

Description: A polynomial over the ring R evaluates to an element in R . (Contributed by SN, 12-Mar-2025)

Ref Expression
Hypotheses evlscl.q Q=IevalSubRS
evlscl.p P=ImPolyU
evlscl.u U=R𝑠S
evlscl.b B=BaseP
evlscl.k K=BaseR
evlscl.i φIV
evlscl.r φRCRing
evlscl.s φSSubRingR
evlscl.f φFB
evlscl.a φAKI
Assertion evlscl φQFAK

Proof

Step Hyp Ref Expression
1 evlscl.q Q=IevalSubRS
2 evlscl.p P=ImPolyU
3 evlscl.u U=R𝑠S
4 evlscl.b B=BaseP
5 evlscl.k K=BaseR
6 evlscl.i φIV
7 evlscl.r φRCRing
8 evlscl.s φSSubRingR
9 evlscl.f φFB
10 evlscl.a φAKI
11 eqid R𝑠KI=R𝑠KI
12 eqid BaseR𝑠KI=BaseR𝑠KI
13 ovexd φKIV
14 1 2 3 11 5 evlsrhm IVRCRingSSubRingRQPRingHomR𝑠KI
15 6 7 8 14 syl3anc φQPRingHomR𝑠KI
16 4 12 rhmf QPRingHomR𝑠KIQ:BBaseR𝑠KI
17 15 16 syl φQ:BBaseR𝑠KI
18 17 9 ffvelcdmd φQFBaseR𝑠KI
19 11 5 12 7 13 18 pwselbas φQF:KIK
20 19 10 ffvelcdmd φQFAK