Metamath Proof Explorer


Theorem explog

Description: Exponentiation of a nonzero complex number to an integer power. (Contributed by Paul Chapman, 21-Apr-2008)

Ref Expression
Assertion explog AA0NAN=eNlogA

Proof

Step Hyp Ref Expression
1 logcl AA0logA
2 efexp logANeNlogA=elogAN
3 1 2 stoic3 AA0NeNlogA=elogAN
4 eflog AA0elogA=A
5 4 3adant3 AA0NelogA=A
6 5 oveq1d AA0NelogAN=AN
7 3 6 eqtr2d AA0NAN=eNlogA