Metamath Proof Explorer


Theorem extdg1b

Description: The degree of the extension E /FldExt F is 1 iff E and F are the same structure. (Contributed by Thierry Arnoux, 6-Aug-2023)

Ref Expression
Assertion extdg1b E/FldExtFE.:.F=1E=F

Proof

Step Hyp Ref Expression
1 extdg1id E/FldExtFE.:.F=1E=F
2 oveq1 E=FE.:.F=F.:.F
3 2 adantl E/FldExtFE=FE.:.F=F.:.F
4 fldextfld2 E/FldExtFFField
5 4 adantr E/FldExtFE=FFField
6 extdgid FFieldF.:.F=1
7 5 6 syl E/FldExtFE=FF.:.F=1
8 3 7 eqtrd E/FldExtFE=FE.:.F=1
9 1 8 impbida E/FldExtFE.:.F=1E=F