Metamath Proof Explorer


Theorem extdgval

Description: Value of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion extdgval E/FldExtFE.:.F=dimsubringAlgEBaseF

Proof

Step Hyp Ref Expression
1 relfldext Rel/FldExt
2 1 brrelex1i E/FldExtFEV
3 elrelimasn Rel/FldExtF/FldExtEE/FldExtF
4 1 3 ax-mp F/FldExtEE/FldExtF
5 4 biimpri E/FldExtFF/FldExtE
6 fvexd E/FldExtFdimsubringAlgEBaseFV
7 simpl e=Ef=Fe=E
8 7 fveq2d e=Ef=FsubringAlge=subringAlgE
9 simpr e=Ef=Ff=F
10 9 fveq2d e=Ef=FBasef=BaseF
11 8 10 fveq12d e=Ef=FsubringAlgeBasef=subringAlgEBaseF
12 11 fveq2d e=Ef=FdimsubringAlgeBasef=dimsubringAlgEBaseF
13 sneq e=Ee=E
14 13 imaeq2d e=E/FldExte=/FldExtE
15 df-extdg .:.=eV,f/FldExtedimsubringAlgeBasef
16 12 14 15 ovmpox EVF/FldExtEdimsubringAlgEBaseFVE.:.F=dimsubringAlgEBaseF
17 2 5 6 16 syl3anc E/FldExtFE.:.F=dimsubringAlgEBaseF