Metamath Proof Explorer


Theorem f0rn0

Description: If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018)

Ref Expression
Assertion f0rn0 E:XY¬yYyranEX=

Proof

Step Hyp Ref Expression
1 fdm E:XYdomE=X
2 frn E:XYranEY
3 ralnex yY¬yranE¬yYyranE
4 disj YranE=yY¬yranE
5 df-ss ranEYranEY=ranE
6 incom ranEY=YranE
7 6 eqeq1i ranEY=ranEYranE=ranE
8 eqtr2 YranE=ranEYranE=ranE=
9 8 ex YranE=ranEYranE=ranE=
10 7 9 sylbi ranEY=ranEYranE=ranE=
11 5 10 sylbi ranEYYranE=ranE=
12 4 11 biimtrrid ranEYyY¬yranEranE=
13 3 12 biimtrrid ranEY¬yYyranEranE=
14 2 13 syl E:XY¬yYyranEranE=
15 14 imp E:XY¬yYyranEranE=
16 15 adantl domE=XE:XY¬yYyranEranE=
17 dm0rn0 domE=ranE=
18 16 17 sylibr domE=XE:XY¬yYyranEdomE=
19 eqeq1 X=domEX=domE=
20 19 eqcoms domE=XX=domE=
21 20 adantr domE=XE:XY¬yYyranEX=domE=
22 18 21 mpbird domE=XE:XY¬yYyranEX=
23 22 exp32 domE=XE:XY¬yYyranEX=
24 1 23 mpcom E:XY¬yYyranEX=
25 24 imp E:XY¬yYyranEX=