Metamath Proof Explorer


Theorem f1elima

Description: Membership in the image of a 1-1 map. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion f1elima F:A1-1BXAYAFXFYXY

Proof

Step Hyp Ref Expression
1 f1fn F:A1-1BFFnA
2 fvelimab FFnAYAFXFYzYFz=FX
3 1 2 sylan F:A1-1BYAFXFYzYFz=FX
4 3 3adant2 F:A1-1BXAYAFXFYzYFz=FX
5 ssel YAzYzA
6 5 impac YAzYzAzY
7 f1fveq F:A1-1BzAXAFz=FXz=X
8 7 ancom2s F:A1-1BXAzAFz=FXz=X
9 8 biimpd F:A1-1BXAzAFz=FXz=X
10 9 anassrs F:A1-1BXAzAFz=FXz=X
11 eleq1 z=XzYXY
12 11 biimpcd zYz=XXY
13 10 12 sylan9 F:A1-1BXAzAzYFz=FXXY
14 13 anasss F:A1-1BXAzAzYFz=FXXY
15 6 14 sylan2 F:A1-1BXAYAzYFz=FXXY
16 15 anassrs F:A1-1BXAYAzYFz=FXXY
17 16 rexlimdva F:A1-1BXAYAzYFz=FXXY
18 17 3impa F:A1-1BXAYAzYFz=FXXY
19 eqid FX=FX
20 fveqeq2 z=XFz=FXFX=FX
21 20 rspcev XYFX=FXzYFz=FX
22 19 21 mpan2 XYzYFz=FX
23 18 22 impbid1 F:A1-1BXAYAzYFz=FXXY
24 4 23 bitrd F:A1-1BXAYAFXFYXY