Metamath Proof Explorer


Theorem f1opr

Description: Condition for an operation to be one-to-one. (Contributed by Jeff Madsen, 17-Jun-2010)

Ref Expression
Assertion f1opr F:A×B1-1CF:A×BCrAsBtAuBrFs=tFur=ts=u

Proof

Step Hyp Ref Expression
1 dff13 F:A×B1-1CF:A×BCvA×BwA×BFv=Fwv=w
2 fveq2 v=rsFv=Frs
3 df-ov rFs=Frs
4 2 3 eqtr4di v=rsFv=rFs
5 4 eqeq1d v=rsFv=FwrFs=Fw
6 eqeq1 v=rsv=wrs=w
7 5 6 imbi12d v=rsFv=Fwv=wrFs=Fwrs=w
8 7 ralbidv v=rswA×BFv=Fwv=wwA×BrFs=Fwrs=w
9 8 ralxp vA×BwA×BFv=Fwv=wrAsBwA×BrFs=Fwrs=w
10 fveq2 w=tuFw=Ftu
11 df-ov tFu=Ftu
12 10 11 eqtr4di w=tuFw=tFu
13 12 eqeq2d w=turFs=FwrFs=tFu
14 eqeq2 w=turs=wrs=tu
15 vex rV
16 vex sV
17 15 16 opth rs=tur=ts=u
18 14 17 bitrdi w=turs=wr=ts=u
19 13 18 imbi12d w=turFs=Fwrs=wrFs=tFur=ts=u
20 19 ralxp wA×BrFs=Fwrs=wtAuBrFs=tFur=ts=u
21 20 2ralbii rAsBwA×BrFs=Fwrs=wrAsBtAuBrFs=tFur=ts=u
22 9 21 bitri vA×BwA×BFv=Fwv=wrAsBtAuBrFs=tFur=ts=u
23 22 anbi2i F:A×BCvA×BwA×BFv=Fwv=wF:A×BCrAsBtAuBrFs=tFur=ts=u
24 1 23 bitri F:A×B1-1CF:A×BCrAsBtAuBrFs=tFur=ts=u