Description: Restricting a bijection, which is a mapping from a restricted class abstraction, to a subset is a bijection. (Contributed by AV, 7-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | f1ossf1o.x | |
|
f1ossf1o.y | |
||
f1ossf1o.f | |
||
f1ossf1o.g | |
||
f1ossf1o.b | |
||
f1ossf1o.s | |
||
Assertion | f1ossf1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ossf1o.x | |
|
2 | f1ossf1o.y | |
|
3 | f1ossf1o.f | |
|
4 | f1ossf1o.g | |
|
5 | f1ossf1o.b | |
|
6 | f1ossf1o.s | |
|
7 | 4 5 6 | f1oresrab | |
8 | simpl | |
|
9 | 8 | a1i | |
10 | 9 | ss2rabi | |
11 | 10 1 2 | 3sstr4i | |
12 | 11 | a1i | |
13 | 12 | resmptd | |
14 | 4 | a1i | |
15 | 2 | rabeqi | |
16 | nfcv | |
|
17 | nfcv | |
|
18 | nfs1v | |
|
19 | sbequ12 | |
|
20 | 16 17 18 19 | elrabf | |
21 | 20 | anbi1i | |
22 | anass | |
|
23 | 21 22 | bitri | |
24 | 23 | rabbia2 | |
25 | nfcv | |
|
26 | nfv | |
|
27 | nfs1v | |
|
28 | 18 27 | nfan | |
29 | sbequ12 | |
|
30 | 19 29 | anbi12d | |
31 | 17 25 26 28 30 | cbvrabw | |
32 | 1 31 | eqtr2i | |
33 | 15 24 32 | 3eqtri | |
34 | 33 | a1i | |
35 | 14 34 | reseq12d | |
36 | 3 | a1i | |
37 | 13 35 36 | 3eqtr4rd | |
38 | 15 24 | eqtr2i | |
39 | 1 31 38 | 3eqtri | |
40 | 39 | a1i | |
41 | eqidd | |
|
42 | 37 40 41 | f1oeq123d | |
43 | 7 42 | mpbird | |