Metamath Proof Explorer


Theorem f1ossf1o

Description: Restricting a bijection, which is a mapping from a restricted class abstraction, to a subset is a bijection. (Contributed by AV, 7-Aug-2022)

Ref Expression
Hypotheses f1ossf1o.x X=wA|ψχ
f1ossf1o.y Y=wA|ψ
f1ossf1o.f F=xXB
f1ossf1o.g G=xYB
f1ossf1o.b φG:Y1-1 ontoC
f1ossf1o.s φxYy=Bτxwχ
Assertion f1ossf1o φF:X1-1 ontoyC|τ

Proof

Step Hyp Ref Expression
1 f1ossf1o.x X=wA|ψχ
2 f1ossf1o.y Y=wA|ψ
3 f1ossf1o.f F=xXB
4 f1ossf1o.g G=xYB
5 f1ossf1o.b φG:Y1-1 ontoC
6 f1ossf1o.s φxYy=Bτxwχ
7 4 5 6 f1oresrab φGxY|xwχ:xY|xwχ1-1 ontoyC|τ
8 simpl ψχψ
9 8 a1i wAψχψ
10 9 ss2rabi wA|ψχwA|ψ
11 10 1 2 3sstr4i XY
12 11 a1i φXY
13 12 resmptd φxYBX=xXB
14 4 a1i φG=xYB
15 2 rabeqi xY|xwχ=xwA|ψ|xwχ
16 nfcv _wx
17 nfcv _wA
18 nfs1v wxwψ
19 sbequ12 w=xψxwψ
20 16 17 18 19 elrabf xwA|ψxAxwψ
21 20 anbi1i xwA|ψxwχxAxwψxwχ
22 anass xAxwψxwχxAxwψxwχ
23 21 22 bitri xwA|ψxwχxAxwψxwχ
24 23 rabbia2 xwA|ψ|xwχ=xA|xwψxwχ
25 nfcv _xA
26 nfv xψχ
27 nfs1v wxwχ
28 18 27 nfan wxwψxwχ
29 sbequ12 w=xχxwχ
30 19 29 anbi12d w=xψχxwψxwχ
31 17 25 26 28 30 cbvrabw wA|ψχ=xA|xwψxwχ
32 1 31 eqtr2i xA|xwψxwχ=X
33 15 24 32 3eqtri xY|xwχ=X
34 33 a1i φxY|xwχ=X
35 14 34 reseq12d φGxY|xwχ=xYBX
36 3 a1i φF=xXB
37 13 35 36 3eqtr4rd φF=GxY|xwχ
38 15 24 eqtr2i xA|xwψxwχ=xY|xwχ
39 1 31 38 3eqtri X=xY|xwχ
40 39 a1i φX=xY|xwχ
41 eqidd φyC|τ=yC|τ
42 37 40 41 f1oeq123d φF:X1-1 ontoyC|τGxY|xwχ:xY|xwχ1-1 ontoyC|τ
43 7 42 mpbird φF:X1-1 ontoyC|τ