Metamath Proof Explorer


Theorem fargshiftf

Description: If a class is a function, then also its "shifted function" is a function. (Contributed by Alexander van der Vekens, 23-Nov-2017)

Ref Expression
Hypothesis fargshift.g G=x0..^FFx+1
Assertion fargshiftf N0F:1NdomEG:0..^FdomE

Proof

Step Hyp Ref Expression
1 fargshift.g G=x0..^FFx+1
2 ffn F:1NdomEFFn1N
3 fseq1hash N0FFn1NF=N
4 2 3 sylan2 N0F:1NdomEF=N
5 eleq1 N=FN0F0
6 oveq2 N=F1N=1F
7 6 feq2d N=FF:1NdomEF:1FdomE
8 5 7 anbi12d N=FN0F:1NdomEF0F:1FdomE
9 8 eqcoms F=NN0F:1NdomEF0F:1FdomE
10 fz0add1fz1 F0x0..^Fx+11F
11 ffvelcdm F:1FdomEx+11FFx+1domE
12 11 expcom x+11FF:1FdomEFx+1domE
13 10 12 syl F0x0..^FF:1FdomEFx+1domE
14 13 impancom F0F:1FdomEx0..^FFx+1domE
15 14 ralrimiv F0F:1FdomEx0..^FFx+1domE
16 9 15 syl6bi F=NN0F:1NdomEx0..^FFx+1domE
17 4 16 mpcom N0F:1NdomEx0..^FFx+1domE
18 1 fmpt x0..^FFx+1domEG:0..^FdomE
19 17 18 sylib N0F:1NdomEG:0..^FdomE