Metamath Proof Explorer


Theorem fclsopni

Description: An open neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Mario Carneiro, 11-Apr-2015) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Assertion fclsopni A J fClus F U J A U S F U S

Proof

Step Hyp Ref Expression
1 eqid J = J
2 1 fclsfil A J fClus F F Fil J
3 fclstopon A J fClus F J TopOn J F Fil J
4 2 3 mpbird A J fClus F J TopOn J
5 fclsopn J TopOn J F Fil J A J fClus F A J o J A o s F o s
6 4 2 5 syl2anc A J fClus F A J fClus F A J o J A o s F o s
7 6 ibi A J fClus F A J o J A o s F o s
8 eleq2 o = U A o A U
9 ineq1 o = U o s = U s
10 9 neeq1d o = U o s U s
11 10 ralbidv o = U s F o s s F U s
12 8 11 imbi12d o = U A o s F o s A U s F U s
13 12 rspccv o J A o s F o s U J A U s F U s
14 7 13 simpl2im A J fClus F U J A U s F U s
15 ineq2 s = S U s = U S
16 15 neeq1d s = S U s U S
17 16 rspccv s F U s S F U S
18 14 17 syl8 A J fClus F U J A U S F U S
19 18 3imp2 A J fClus F U J A U S F U S