Metamath Proof Explorer


Theorem fclsopni

Description: An open neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Mario Carneiro, 11-Apr-2015) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Assertion fclsopni AJfClusFUJAUSFUS

Proof

Step Hyp Ref Expression
1 eqid J=J
2 1 fclsfil AJfClusFFFilJ
3 fclstopon AJfClusFJTopOnJFFilJ
4 2 3 mpbird AJfClusFJTopOnJ
5 fclsopn JTopOnJFFilJAJfClusFAJoJAosFos
6 4 2 5 syl2anc AJfClusFAJfClusFAJoJAosFos
7 6 ibi AJfClusFAJoJAosFos
8 eleq2 o=UAoAU
9 ineq1 o=Uos=Us
10 9 neeq1d o=UosUs
11 10 ralbidv o=UsFossFUs
12 8 11 imbi12d o=UAosFosAUsFUs
13 12 rspccv oJAosFosUJAUsFUs
14 7 13 simpl2im AJfClusFUJAUsFUs
15 ineq2 s=SUs=US
16 15 neeq1d s=SUsUS
17 16 rspccv sFUsSFUS
18 14 17 syl8 AJfClusFUJAUSFUS
19 18 3imp2 AJfClusFUJAUSFUS