Metamath Proof Explorer


Theorem fclsss1

Description: A finer topology has fewer cluster points. (Contributed by Jeff Hankins, 11-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Assertion fclsss1 JTopOnXFFilXJKKfClusFJfClusF

Proof

Step Hyp Ref Expression
1 simpl3 JTopOnXFFilXJKxKfClusFJK
2 ssralv JKoKxosFosoJxosFos
3 2 anim2d JKxXoKxosFosxXoJxosFos
4 1 3 syl JTopOnXFFilXJKxKfClusFxXoKxosFosxXoJxosFos
5 simpl2 JTopOnXFFilXJKxKfClusFFFilX
6 fclstopon xKfClusFKTopOnXFFilX
7 6 adantl JTopOnXFFilXJKxKfClusFKTopOnXFFilX
8 5 7 mpbird JTopOnXFFilXJKxKfClusFKTopOnX
9 fclsopn KTopOnXFFilXxKfClusFxXoKxosFos
10 8 5 9 syl2anc JTopOnXFFilXJKxKfClusFxKfClusFxXoKxosFos
11 simpl1 JTopOnXFFilXJKxKfClusFJTopOnX
12 fclsopn JTopOnXFFilXxJfClusFxXoJxosFos
13 11 5 12 syl2anc JTopOnXFFilXJKxKfClusFxJfClusFxXoJxosFos
14 4 10 13 3imtr4d JTopOnXFFilXJKxKfClusFxKfClusFxJfClusF
15 14 ex JTopOnXFFilXJKxKfClusFxKfClusFxJfClusF
16 15 pm2.43d JTopOnXFFilXJKxKfClusFxJfClusF
17 16 ssrdv JTopOnXFFilXJKKfClusFJfClusF