Metamath Proof Explorer


Theorem fcof

Description: Composition of a function with domain and codomain and a function as a function with domain and codomain. Generalization of fco . (Contributed by AV, 18-Sep-2024)

Ref Expression
Assertion fcof F:ABFunGFG:G-1AB

Proof

Step Hyp Ref Expression
1 df-f F:ABFFnAranFB
2 fncofn FFnAFunGFGFnG-1A
3 2 ex FFnAFunGFGFnG-1A
4 3 adantr FFnAranFBFunGFGFnG-1A
5 rncoss ranFGranF
6 sstr ranFGranFranFBranFGB
7 5 6 mpan ranFBranFGB
8 7 adantl FFnAranFBranFGB
9 4 8 jctird FFnAranFBFunGFGFnG-1AranFGB
10 9 imp FFnAranFBFunGFGFnG-1AranFGB
11 1 10 sylanb F:ABFunGFGFnG-1AranFGB
12 df-f FG:G-1ABFGFnG-1AranFGB
13 11 12 sylibr F:ABFunGFG:G-1AB