Metamath Proof Explorer


Theorem fcof1oinvd

Description: Show that a function is the inverse of a bijective function if their composition is the identity function. Formerly part of proof of fcof1o . (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses fcof1oinvd.f φF:A1-1 ontoB
fcof1oinvd.g φG:BA
fcof1oinvd.b φFG=IB
Assertion fcof1oinvd φF-1=G

Proof

Step Hyp Ref Expression
1 fcof1oinvd.f φF:A1-1 ontoB
2 fcof1oinvd.g φG:BA
3 fcof1oinvd.b φFG=IB
4 3 coeq2d φF-1FG=F-1IB
5 coass F-1FG=F-1FG
6 f1ococnv1 F:A1-1 ontoBF-1F=IA
7 1 6 syl φF-1F=IA
8 7 coeq1d φF-1FG=IAG
9 fcoi2 G:BAIAG=G
10 2 9 syl φIAG=G
11 8 10 eqtrd φF-1FG=G
12 5 11 eqtr3id φF-1FG=G
13 f1ocnv F:A1-1 ontoBF-1:B1-1 ontoA
14 1 13 syl φF-1:B1-1 ontoA
15 f1of F-1:B1-1 ontoAF-1:BA
16 14 15 syl φF-1:BA
17 fcoi1 F-1:BAF-1IB=F-1
18 16 17 syl φF-1IB=F-1
19 4 12 18 3eqtr3rd φF-1=G