Description: Show that a function is the inverse of a bijective function if their composition is the identity function. Formerly part of proof of fcof1o . (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by AV, 15-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fcof1oinvd.f | |
|
fcof1oinvd.g | |
||
fcof1oinvd.b | |
||
Assertion | fcof1oinvd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcof1oinvd.f | |
|
2 | fcof1oinvd.g | |
|
3 | fcof1oinvd.b | |
|
4 | 3 | coeq2d | |
5 | coass | |
|
6 | f1ococnv1 | |
|
7 | 1 6 | syl | |
8 | 7 | coeq1d | |
9 | fcoi2 | |
|
10 | 2 9 | syl | |
11 | 8 10 | eqtrd | |
12 | 5 11 | eqtr3id | |
13 | f1ocnv | |
|
14 | 1 13 | syl | |
15 | f1of | |
|
16 | 14 15 | syl | |
17 | fcoi1 | |
|
18 | 16 17 | syl | |
19 | 4 12 18 | 3eqtr3rd | |