Metamath Proof Explorer


Theorem fcoreslem1

Description: Lemma 1 for fcores . (Contributed by AV, 17-Sep-2024)

Ref Expression
Hypotheses fcores.f φF:AB
fcores.e E=ranFC
fcores.p P=F-1C
Assertion fcoreslem1 φP=F-1E

Proof

Step Hyp Ref Expression
1 fcores.f φF:AB
2 fcores.e E=ranFC
3 fcores.p P=F-1C
4 1 ffund φFunF
5 cnvimainrn FunFF-1ranFC=F-1C
6 4 5 syl φF-1ranFC=F-1C
7 6 eqcomd φF-1C=F-1ranFC
8 2 imaeq2i F-1E=F-1ranFC
9 7 3 8 3eqtr4g φP=F-1E