Metamath Proof Explorer


Theorem fczfsuppd

Description: A constant function with value zero is finitely supported. (Contributed by AV, 30-Jun-2019)

Ref Expression
Hypotheses fczfsuppd.b φBV
fczfsuppd.z φZW
Assertion fczfsuppd φfinSuppZB×Z

Proof

Step Hyp Ref Expression
1 fczfsuppd.b φBV
2 fczfsuppd.z φZW
3 fnconstg ZWB×ZFnB
4 fnfun B×ZFnBFunB×Z
5 2 3 4 3syl φFunB×Z
6 fczsupp0 B×ZsuppZ=
7 0fin Fin
8 6 7 eqeltri B×ZsuppZFin
9 8 a1i φB×ZsuppZFin
10 snex ZV
11 xpexg BVZVB×ZV
12 1 10 11 sylancl φB×ZV
13 isfsupp B×ZVZWfinSuppZB×ZFunB×ZB×ZsuppZFin
14 12 2 13 syl2anc φfinSuppZB×ZFunB×ZB×ZsuppZFin
15 5 9 14 mpbir2and φfinSuppZB×Z