Metamath Proof Explorer


Theorem fdivpm

Description: The quotient of two functions into the complex numbers is a partial function. (Contributed by AV, 16-May-2020)

Ref Expression
Assertion fdivpm F:AG:AAVF/f G 𝑝𝑚A

Proof

Step Hyp Ref Expression
1 cnex V
2 1 a1i F:AG:AAVV
3 simp3 F:AG:AAVAV
4 fdivmptf F:AG:AAVF/f G : Gsupp0
5 suppssdm Gsupp0domG
6 fdm G:AdomG=A
7 6 eqcomd G:AA=domG
8 7 3ad2ant2 F:AG:AAVA=domG
9 5 8 sseqtrrid F:AG:AAVGsupp0A
10 elpm2r VAVF/f G : Gsupp0 Gsupp0A F/f G𝑝𝑚A
11 2 3 4 9 10 syl22anc F:AG:AAVF/f G 𝑝𝑚A