Metamath Proof Explorer


Theorem fdmdifeqresdif

Description: The restriction of a conditional mapping to function values of a function having a domain which is a difference with a singleton equals this function. (Contributed by AV, 23-Apr-2019)

Ref Expression
Hypothesis fdmdifeqresdif.f F=xDifx=YXGx
Assertion fdmdifeqresdif G:DYRG=FDY

Proof

Step Hyp Ref Expression
1 fdmdifeqresdif.f F=xDifx=YXGx
2 eldifsnneq xDY¬x=Y
3 2 adantl G:DYRxDY¬x=Y
4 3 iffalsed G:DYRxDYifx=YXGx=Gx
5 4 mpteq2dva G:DYRxDYifx=YXGx=xDYGx
6 1 reseq1i FDY=xDifx=YXGxDY
7 difssd G:DYRDYD
8 7 resmptd G:DYRxDifx=YXGxDY=xDYifx=YXGx
9 6 8 eqtrid G:DYRFDY=xDYifx=YXGx
10 ffn G:DYRGFnDY
11 dffn5 GFnDYG=xDYGx
12 10 11 sylib G:DYRG=xDYGx
13 5 9 12 3eqtr4rd G:DYRG=FDY