Metamath Proof Explorer


Theorem ffnfv

Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003)

Ref Expression
Assertion ffnfv F:ABFFnAxAFxB

Proof

Step Hyp Ref Expression
1 ffn F:ABFFnA
2 ffvelcdm F:ABxAFxB
3 2 ralrimiva F:ABxAFxB
4 1 3 jca F:ABFFnAxAFxB
5 simpl FFnAxAFxBFFnA
6 fvelrnb FFnAyranFxAFx=y
7 6 biimpd FFnAyranFxAFx=y
8 nfra1 xxAFxB
9 nfv xyB
10 rsp xAFxBxAFxB
11 eleq1 Fx=yFxByB
12 11 biimpcd FxBFx=yyB
13 10 12 syl6 xAFxBxAFx=yyB
14 8 9 13 rexlimd xAFxBxAFx=yyB
15 7 14 sylan9 FFnAxAFxByranFyB
16 15 ssrdv FFnAxAFxBranFB
17 df-f F:ABFFnAranFB
18 5 16 17 sylanbrc FFnAxAFxBF:AB
19 4 18 impbii F:ABFFnAxAFxB