Metamath Proof Explorer


Theorem ffoss

Description: Relationship between a mapping and an onto mapping. Figure 38 of Enderton p. 145. (Contributed by NM, 10-May-1998)

Ref Expression
Hypothesis f11o.1 FV
Assertion ffoss F:ABxF:AontoxxB

Proof

Step Hyp Ref Expression
1 f11o.1 FV
2 df-f F:ABFFnAranFB
3 dffn4 FFnAF:AontoranF
4 3 anbi1i FFnAranFBF:AontoranFranFB
5 2 4 bitri F:ABF:AontoranFranFB
6 1 rnex ranFV
7 foeq3 x=ranFF:AontoxF:AontoranF
8 sseq1 x=ranFxBranFB
9 7 8 anbi12d x=ranFF:AontoxxBF:AontoranFranFB
10 6 9 spcev F:AontoranFranFBxF:AontoxxB
11 5 10 sylbi F:ABxF:AontoxxB
12 fof F:AontoxF:Ax
13 fss F:AxxBF:AB
14 12 13 sylan F:AontoxxBF:AB
15 14 exlimiv xF:AontoxxBF:AB
16 11 15 impbii F:ABxF:AontoxxB