Metamath Proof Explorer


Theorem ffthres2c

Description: Condition for a fully faithful functor to also be a fully faithful functor into the restriction. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses ffthres2c.a A=BaseC
ffthres2c.e E=D𝑠S
ffthres2c.d φDCat
ffthres2c.r φSV
ffthres2c.1 φF:AS
Assertion ffthres2c φFCFullDCFaithDGFCFullECFaithEG

Proof

Step Hyp Ref Expression
1 ffthres2c.a A=BaseC
2 ffthres2c.e E=D𝑠S
3 ffthres2c.d φDCat
4 ffthres2c.r φSV
5 ffthres2c.1 φF:AS
6 1 2 3 4 5 fullres2c φFCFullDGFCFullEG
7 1 2 3 4 5 fthres2c φFCFaithDGFCFaithEG
8 6 7 anbi12d φFCFullDGFCFaithDGFCFullEGFCFaithEG
9 brin FCFullDCFaithDGFCFullDGFCFaithDG
10 brin FCFullECFaithEGFCFullEGFCFaithEG
11 8 9 10 3bitr4g φFCFullDCFaithDGFCFullECFaithEG