Metamath Proof Explorer


Theorem fib5

Description: Value of the Fibonacci sequence at index 5. (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Assertion fib5 Fibci5=5

Proof

Step Hyp Ref Expression
1 4p1e5 4+1=5
2 1 fveq2i Fibci4+1=Fibci5
3 4nn 4
4 fibp1 4Fibci4+1=Fibci41+Fibci4
5 3 4 ax-mp Fibci4+1=Fibci41+Fibci4
6 4cn 4
7 ax-1cn 1
8 3cn 3
9 3p1e4 3+1=4
10 8 7 9 addcomli 1+3=4
11 6 7 8 10 subaddrii 41=3
12 11 fveq2i Fibci41=Fibci3
13 fib3 Fibci3=2
14 12 13 eqtri Fibci41=2
15 fib4 Fibci4=3
16 14 15 oveq12i Fibci41+Fibci4=2+3
17 2cn 2
18 3p2e5 3+2=5
19 8 17 18 addcomli 2+3=5
20 5 16 19 3eqtri Fibci4+1=5
21 2 20 eqtr3i Fibci5=5