Metamath Proof Explorer


Theorem ficardadju

Description: The disjoint union of finite sets is equinumerous to the ordinal sum of the cardinalities of those sets. (Contributed by BTernaryTau, 3-Jul-2024)

Ref Expression
Assertion ficardadju A Fin B Fin A ⊔︀ B card A + 𝑜 card B

Proof

Step Hyp Ref Expression
1 ficardom A Fin card A ω
2 ficardom B Fin card B ω
3 nnadju card A ω card B ω card card A ⊔︀ card B = card A + 𝑜 card B
4 df-dju card A ⊔︀ card B = × card A 1 𝑜 × card B
5 snfi Fin
6 nnfi card A ω card A Fin
7 xpfi Fin card A Fin × card A Fin
8 5 6 7 sylancr card A ω × card A Fin
9 snfi 1 𝑜 Fin
10 nnfi card B ω card B Fin
11 xpfi 1 𝑜 Fin card B Fin 1 𝑜 × card B Fin
12 9 10 11 sylancr card B ω 1 𝑜 × card B Fin
13 unfi × card A Fin 1 𝑜 × card B Fin × card A 1 𝑜 × card B Fin
14 8 12 13 syl2an card A ω card B ω × card A 1 𝑜 × card B Fin
15 4 14 eqeltrid card A ω card B ω card A ⊔︀ card B Fin
16 ficardid card A ⊔︀ card B Fin card card A ⊔︀ card B card A ⊔︀ card B
17 15 16 syl card A ω card B ω card card A ⊔︀ card B card A ⊔︀ card B
18 3 17 eqbrtrrd card A ω card B ω card A + 𝑜 card B card A ⊔︀ card B
19 1 2 18 syl2an A Fin B Fin card A + 𝑜 card B card A ⊔︀ card B
20 ficardid A Fin card A A
21 ficardid B Fin card B B
22 djuen card A A card B B card A ⊔︀ card B A ⊔︀ B
23 20 21 22 syl2an A Fin B Fin card A ⊔︀ card B A ⊔︀ B
24 entr card A + 𝑜 card B card A ⊔︀ card B card A ⊔︀ card B A ⊔︀ B card A + 𝑜 card B A ⊔︀ B
25 19 23 24 syl2anc A Fin B Fin card A + 𝑜 card B A ⊔︀ B
26 25 ensymd A Fin B Fin A ⊔︀ B card A + 𝑜 card B