Metamath Proof Explorer


Theorem fimacnvOLD

Description: Obsolete version of fimacnv as of 20-Sep-2024. (Contributed by FL, 25-Jan-2007) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion fimacnvOLD F:ABF-1B=A

Proof

Step Hyp Ref Expression
1 imassrn F-1BranF-1
2 dfdm4 domF=ranF-1
3 fdm F:ABdomF=A
4 ssid AA
5 3 4 eqsstrdi F:ABdomFA
6 2 5 eqsstrrid F:ABranF-1A
7 1 6 sstrid F:ABF-1BA
8 fimass F:ABFAB
9 ffun F:ABFunF
10 4 3 sseqtrrid F:ABAdomF
11 funimass3 FunFAdomFFABAF-1B
12 9 10 11 syl2anc F:ABFABAF-1B
13 8 12 mpbid F:ABAF-1B
14 7 13 eqssd F:ABF-1B=A