Metamath Proof Explorer


Theorem fin23lem24

Description: Lemma for fin23 . In a class of ordinals, each element is fully identified by those of its predecessors which also belong to the class. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Assertion fin23lem24 OrdABACBDBCB=DBC=D

Proof

Step Hyp Ref Expression
1 simpll OrdABACBDBOrdA
2 simplr OrdABACBDBBA
3 simprl OrdABACBDBCB
4 2 3 sseldd OrdABACBDBCA
5 ordelord OrdACAOrdC
6 1 4 5 syl2anc OrdABACBDBOrdC
7 simprr OrdABACBDBDB
8 2 7 sseldd OrdABACBDBDA
9 ordelord OrdADAOrdD
10 1 8 9 syl2anc OrdABACBDBOrdD
11 ordtri3 OrdCOrdDC=D¬CDDC
12 11 necon2abid OrdCOrdDCDDCCD
13 6 10 12 syl2anc OrdABACBDBCDDCCD
14 simpr OrdABACBDBCDCD
15 simplrl OrdABACBDBCDCB
16 14 15 elind OrdABACBDBCDCDB
17 6 adantr OrdABACBDBCDOrdC
18 ordirr OrdC¬CC
19 17 18 syl OrdABACBDBCD¬CC
20 elinel1 CCBCC
21 19 20 nsyl OrdABACBDBCD¬CCB
22 nelne1 CDB¬CCBDBCB
23 16 21 22 syl2anc OrdABACBDBCDDBCB
24 23 necomd OrdABACBDBCDCBDB
25 simpr OrdABACBDBDCDC
26 simplrr OrdABACBDBDCDB
27 25 26 elind OrdABACBDBDCDCB
28 10 adantr OrdABACBDBDCOrdD
29 ordirr OrdD¬DD
30 28 29 syl OrdABACBDBDC¬DD
31 elinel1 DDBDD
32 30 31 nsyl OrdABACBDBDC¬DDB
33 nelne1 DCB¬DDBCBDB
34 27 32 33 syl2anc OrdABACBDBDCCBDB
35 24 34 jaodan OrdABACBDBCDDCCBDB
36 35 ex OrdABACBDBCDDCCBDB
37 13 36 sylbird OrdABACBDBCDCBDB
38 37 necon4d OrdABACBDBCB=DBC=D
39 ineq1 C=DCB=DB
40 38 39 impbid1 OrdABACBDBCB=DBC=D