Metamath Proof Explorer


Theorem fin23lem24

Description: Lemma for fin23 . In a class of ordinals, each element is fully identified by those of its predecessors which also belong to the class. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Assertion fin23lem24 Ord A B A C B D B C B = D B C = D

Proof

Step Hyp Ref Expression
1 simpll Ord A B A C B D B Ord A
2 simplr Ord A B A C B D B B A
3 simprl Ord A B A C B D B C B
4 2 3 sseldd Ord A B A C B D B C A
5 ordelord Ord A C A Ord C
6 1 4 5 syl2anc Ord A B A C B D B Ord C
7 simprr Ord A B A C B D B D B
8 2 7 sseldd Ord A B A C B D B D A
9 ordelord Ord A D A Ord D
10 1 8 9 syl2anc Ord A B A C B D B Ord D
11 ordtri3 Ord C Ord D C = D ¬ C D D C
12 11 necon2abid Ord C Ord D C D D C C D
13 6 10 12 syl2anc Ord A B A C B D B C D D C C D
14 simpr Ord A B A C B D B C D C D
15 simplrl Ord A B A C B D B C D C B
16 14 15 elind Ord A B A C B D B C D C D B
17 6 adantr Ord A B A C B D B C D Ord C
18 ordirr Ord C ¬ C C
19 17 18 syl Ord A B A C B D B C D ¬ C C
20 elinel1 C C B C C
21 19 20 nsyl Ord A B A C B D B C D ¬ C C B
22 nelne1 C D B ¬ C C B D B C B
23 16 21 22 syl2anc Ord A B A C B D B C D D B C B
24 23 necomd Ord A B A C B D B C D C B D B
25 simpr Ord A B A C B D B D C D C
26 simplrr Ord A B A C B D B D C D B
27 25 26 elind Ord A B A C B D B D C D C B
28 10 adantr Ord A B A C B D B D C Ord D
29 ordirr Ord D ¬ D D
30 28 29 syl Ord A B A C B D B D C ¬ D D
31 elinel1 D D B D D
32 30 31 nsyl Ord A B A C B D B D C ¬ D D B
33 nelne1 D C B ¬ D D B C B D B
34 27 32 33 syl2anc Ord A B A C B D B D C C B D B
35 24 34 jaodan Ord A B A C B D B C D D C C B D B
36 35 ex Ord A B A C B D B C D D C C B D B
37 13 36 sylbird Ord A B A C B D B C D C B D B
38 37 necon4d Ord A B A C B D B C B = D B C = D
39 ineq1 C = D C B = D B
40 38 39 impbid1 Ord A B A C B D B C B = D B C = D