Description: Lemma for fin23 . In a class of ordinals, each element is fully identified by those of its predecessors which also belong to the class. (Contributed by Stefan O'Rear, 1-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | fin23lem24 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll | |
|
2 | simplr | |
|
3 | simprl | |
|
4 | 2 3 | sseldd | |
5 | ordelord | |
|
6 | 1 4 5 | syl2anc | |
7 | simprr | |
|
8 | 2 7 | sseldd | |
9 | ordelord | |
|
10 | 1 8 9 | syl2anc | |
11 | ordtri3 | |
|
12 | 11 | necon2abid | |
13 | 6 10 12 | syl2anc | |
14 | simpr | |
|
15 | simplrl | |
|
16 | 14 15 | elind | |
17 | 6 | adantr | |
18 | ordirr | |
|
19 | 17 18 | syl | |
20 | elinel1 | |
|
21 | 19 20 | nsyl | |
22 | nelne1 | |
|
23 | 16 21 22 | syl2anc | |
24 | 23 | necomd | |
25 | simpr | |
|
26 | simplrr | |
|
27 | 25 26 | elind | |
28 | 10 | adantr | |
29 | ordirr | |
|
30 | 28 29 | syl | |
31 | elinel1 | |
|
32 | 30 31 | nsyl | |
33 | nelne1 | |
|
34 | 27 32 33 | syl2anc | |
35 | 24 34 | jaodan | |
36 | 35 | ex | |
37 | 13 36 | sylbird | |
38 | 37 | necon4d | |
39 | ineq1 | |
|
40 | 38 39 | impbid1 | |