Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → Ord 𝐴 ) |
2 |
|
simplr |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → 𝐵 ⊆ 𝐴 ) |
3 |
|
simprl |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → 𝐶 ∈ 𝐵 ) |
4 |
2 3
|
sseldd |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → 𝐶 ∈ 𝐴 ) |
5 |
|
ordelord |
⊢ ( ( Ord 𝐴 ∧ 𝐶 ∈ 𝐴 ) → Ord 𝐶 ) |
6 |
1 4 5
|
syl2anc |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → Ord 𝐶 ) |
7 |
|
simprr |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → 𝐷 ∈ 𝐵 ) |
8 |
2 7
|
sseldd |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → 𝐷 ∈ 𝐴 ) |
9 |
|
ordelord |
⊢ ( ( Ord 𝐴 ∧ 𝐷 ∈ 𝐴 ) → Ord 𝐷 ) |
10 |
1 8 9
|
syl2anc |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → Ord 𝐷 ) |
11 |
|
ordtri3 |
⊢ ( ( Ord 𝐶 ∧ Ord 𝐷 ) → ( 𝐶 = 𝐷 ↔ ¬ ( 𝐶 ∈ 𝐷 ∨ 𝐷 ∈ 𝐶 ) ) ) |
12 |
11
|
necon2abid |
⊢ ( ( Ord 𝐶 ∧ Ord 𝐷 ) → ( ( 𝐶 ∈ 𝐷 ∨ 𝐷 ∈ 𝐶 ) ↔ 𝐶 ≠ 𝐷 ) ) |
13 |
6 10 12
|
syl2anc |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( ( 𝐶 ∈ 𝐷 ∨ 𝐷 ∈ 𝐶 ) ↔ 𝐶 ≠ 𝐷 ) ) |
14 |
|
simpr |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐶 ∈ 𝐷 ) → 𝐶 ∈ 𝐷 ) |
15 |
|
simplrl |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐶 ∈ 𝐷 ) → 𝐶 ∈ 𝐵 ) |
16 |
14 15
|
elind |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐶 ∈ 𝐷 ) → 𝐶 ∈ ( 𝐷 ∩ 𝐵 ) ) |
17 |
6
|
adantr |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐶 ∈ 𝐷 ) → Ord 𝐶 ) |
18 |
|
ordirr |
⊢ ( Ord 𝐶 → ¬ 𝐶 ∈ 𝐶 ) |
19 |
17 18
|
syl |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐶 ∈ 𝐷 ) → ¬ 𝐶 ∈ 𝐶 ) |
20 |
|
elinel1 |
⊢ ( 𝐶 ∈ ( 𝐶 ∩ 𝐵 ) → 𝐶 ∈ 𝐶 ) |
21 |
19 20
|
nsyl |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐶 ∈ 𝐷 ) → ¬ 𝐶 ∈ ( 𝐶 ∩ 𝐵 ) ) |
22 |
|
nelne1 |
⊢ ( ( 𝐶 ∈ ( 𝐷 ∩ 𝐵 ) ∧ ¬ 𝐶 ∈ ( 𝐶 ∩ 𝐵 ) ) → ( 𝐷 ∩ 𝐵 ) ≠ ( 𝐶 ∩ 𝐵 ) ) |
23 |
16 21 22
|
syl2anc |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐶 ∈ 𝐷 ) → ( 𝐷 ∩ 𝐵 ) ≠ ( 𝐶 ∩ 𝐵 ) ) |
24 |
23
|
necomd |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐶 ∈ 𝐷 ) → ( 𝐶 ∩ 𝐵 ) ≠ ( 𝐷 ∩ 𝐵 ) ) |
25 |
|
simpr |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐷 ∈ 𝐶 ) → 𝐷 ∈ 𝐶 ) |
26 |
|
simplrr |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐷 ∈ 𝐶 ) → 𝐷 ∈ 𝐵 ) |
27 |
25 26
|
elind |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐷 ∈ 𝐶 ) → 𝐷 ∈ ( 𝐶 ∩ 𝐵 ) ) |
28 |
10
|
adantr |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐷 ∈ 𝐶 ) → Ord 𝐷 ) |
29 |
|
ordirr |
⊢ ( Ord 𝐷 → ¬ 𝐷 ∈ 𝐷 ) |
30 |
28 29
|
syl |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐷 ∈ 𝐶 ) → ¬ 𝐷 ∈ 𝐷 ) |
31 |
|
elinel1 |
⊢ ( 𝐷 ∈ ( 𝐷 ∩ 𝐵 ) → 𝐷 ∈ 𝐷 ) |
32 |
30 31
|
nsyl |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐷 ∈ 𝐶 ) → ¬ 𝐷 ∈ ( 𝐷 ∩ 𝐵 ) ) |
33 |
|
nelne1 |
⊢ ( ( 𝐷 ∈ ( 𝐶 ∩ 𝐵 ) ∧ ¬ 𝐷 ∈ ( 𝐷 ∩ 𝐵 ) ) → ( 𝐶 ∩ 𝐵 ) ≠ ( 𝐷 ∩ 𝐵 ) ) |
34 |
27 32 33
|
syl2anc |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐷 ∈ 𝐶 ) → ( 𝐶 ∩ 𝐵 ) ≠ ( 𝐷 ∩ 𝐵 ) ) |
35 |
24 34
|
jaodan |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ ( 𝐶 ∈ 𝐷 ∨ 𝐷 ∈ 𝐶 ) ) → ( 𝐶 ∩ 𝐵 ) ≠ ( 𝐷 ∩ 𝐵 ) ) |
36 |
35
|
ex |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( ( 𝐶 ∈ 𝐷 ∨ 𝐷 ∈ 𝐶 ) → ( 𝐶 ∩ 𝐵 ) ≠ ( 𝐷 ∩ 𝐵 ) ) ) |
37 |
13 36
|
sylbird |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( 𝐶 ≠ 𝐷 → ( 𝐶 ∩ 𝐵 ) ≠ ( 𝐷 ∩ 𝐵 ) ) ) |
38 |
37
|
necon4d |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( ( 𝐶 ∩ 𝐵 ) = ( 𝐷 ∩ 𝐵 ) → 𝐶 = 𝐷 ) ) |
39 |
|
ineq1 |
⊢ ( 𝐶 = 𝐷 → ( 𝐶 ∩ 𝐵 ) = ( 𝐷 ∩ 𝐵 ) ) |
40 |
38 39
|
impbid1 |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( ( 𝐶 ∩ 𝐵 ) = ( 𝐷 ∩ 𝐵 ) ↔ 𝐶 = 𝐷 ) ) |