Metamath Proof Explorer


Theorem fin23lem33

Description: Lemma for fin23 . Discharge hypotheses. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypothesis fin23lem33.f F=g|a𝒫gωxωasucxaxranarana
Assertion fin23lem33 GFfbb:ω1-1VranbGfb:ω1-1Vranfbranb

Proof

Step Hyp Ref Expression
1 fin23lem33.f F=g|a𝒫gωxωasucxaxranarana
2 fveq2 j=cej=ec
3 2 ineq1d j=cejk=eck
4 3 eqeq1d j=cejk=eck=
5 4 3 ifbieq2d j=cifejk=kejk=ifeck=keck
6 ineq2 k=deck=ecd
7 6 eqeq1d k=deck=ecd=
8 id k=dk=d
9 7 8 6 ifbieq12d k=difeck=keck=ifecd=decd
10 5 9 cbvmpov jω,kVifejk=kejk=cω,dVifecd=decd
11 eqid rane=rane
12 seqomeq12 jω,kVifejk=kejk=cω,dVifecd=decdrane=raneseqωjω,kVifejk=kejkrane=seqωcω,dVifecd=decdrane
13 10 11 12 mp2an seqωjω,kVifejk=kejkrane=seqωcω,dVifecd=decdrane
14 fveq2 l=yel=ey
15 14 sseq2d l=yranseqωjω,kVifejk=kejkraneelranseqωjω,kVifejk=kejkraneey
16 15 cbvrabv lω|ranseqωjω,kVifejk=kejkraneel=yω|ranseqωjω,kVifejk=kejkraneey
17 eqid gωιxlω|ranseqωjω,kVifejk=kejkraneel|xlω|ranseqωjω,kVifejk=kejkraneelg=gωιxlω|ranseqωjω,kVifejk=kejkraneel|xlω|ranseqωjω,kVifejk=kejkraneelg
18 eqid gωιxωlω|ranseqωjω,kVifejk=kejkraneel|xωlω|ranseqωjω,kVifejk=kejkraneelg=gωιxωlω|ranseqωjω,kVifejk=kejkraneel|xωlω|ranseqωjω,kVifejk=kejkraneelg
19 eqid iflω|ranseqωjω,kVifejk=kejkraneelFinegωιxωlω|ranseqωjω,kVifejk=kejkraneel|xωlω|ranseqωjω,kVifejk=kejkraneelgilω|ranseqωjω,kVifejk=kejkraneeleiranseqωjω,kVifejk=kejkranegωιxlω|ranseqωjω,kVifejk=kejkraneel|xlω|ranseqωjω,kVifejk=kejkraneelg=iflω|ranseqωjω,kVifejk=kejkraneelFinegωιxωlω|ranseqωjω,kVifejk=kejkraneel|xωlω|ranseqωjω,kVifejk=kejkraneelgilω|ranseqωjω,kVifejk=kejkraneeleiranseqωjω,kVifejk=kejkranegωιxlω|ranseqωjω,kVifejk=kejkraneel|xlω|ranseqωjω,kVifejk=kejkraneelg
20 13 1 16 17 18 19 fin23lem32 GFfbb:ω1-1VranbGfb:ω1-1Vranfbranb