Metamath Proof Explorer


Theorem fin4en1

Description: Dedekind finite is a cardinal property. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion fin4en1 ABAFinIVBFinIV

Proof

Step Hyp Ref Expression
1 ensym ABBA
2 bren BAff:B1-1 ontoA
3 simpr f:B1-1 ontoAxBxB
4 f1of1 f:B1-1 ontoAf:B1-1A
5 pssss xBxB
6 ssid BB
7 5 6 jctir xBxBBB
8 f1imapss f:B1-1AxBBBfxfBxB
9 4 7 8 syl2an f:B1-1 ontoAxBfxfBxB
10 3 9 mpbird f:B1-1 ontoAxBfxfB
11 imadmrn fdomf=ranf
12 f1odm f:B1-1 ontoAdomf=B
13 12 imaeq2d f:B1-1 ontoAfdomf=fB
14 dff1o5 f:B1-1 ontoAf:B1-1Aranf=A
15 14 simprbi f:B1-1 ontoAranf=A
16 11 13 15 3eqtr3a f:B1-1 ontoAfB=A
17 16 adantr f:B1-1 ontoAxBfB=A
18 17 psseq2d f:B1-1 ontoAxBfxfBfxA
19 10 18 mpbid f:B1-1 ontoAxBfxA
20 19 adantrr f:B1-1 ontoAxBxBfxA
21 vex xV
22 21 f1imaen f:B1-1AxBfxx
23 4 5 22 syl2an f:B1-1 ontoAxBfxx
24 23 adantrr f:B1-1 ontoAxBxBfxx
25 simprr f:B1-1 ontoAxBxBxB
26 entr fxxxBfxB
27 24 25 26 syl2anc f:B1-1 ontoAxBxBfxB
28 vex fV
29 f1oen3g fVf:B1-1 ontoABA
30 28 29 mpan f:B1-1 ontoABA
31 30 adantr f:B1-1 ontoAxBxBBA
32 entr fxBBAfxA
33 27 31 32 syl2anc f:B1-1 ontoAxBxBfxA
34 fin4i fxAfxA¬AFinIV
35 20 33 34 syl2anc f:B1-1 ontoAxBxB¬AFinIV
36 35 ex f:B1-1 ontoAxBxB¬AFinIV
37 36 exlimdv f:B1-1 ontoAxxBxB¬AFinIV
38 37 con2d f:B1-1 ontoAAFinIV¬xxBxB
39 38 exlimiv ff:B1-1 ontoAAFinIV¬xxBxB
40 2 39 sylbi BAAFinIV¬xxBxB
41 relen Rel
42 41 brrelex1i BABV
43 isfin4 BVBFinIV¬xxBxB
44 42 43 syl BABFinIV¬xxBxB
45 40 44 sylibrd BAAFinIVBFinIV
46 1 45 syl ABAFinIVBFinIV