Metamath Proof Explorer


Theorem fin56

Description: Every V-finite set is VI-finite because multiplication dominates addition for cardinals. (Contributed by Stefan O'Rear, 29-Oct-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fin56 AFinVAFinVI

Proof

Step Hyp Ref Expression
1 orc A=A=A1𝑜
2 sdom2en01 A2𝑜A=A1𝑜
3 1 2 sylibr A=A2𝑜
4 3 orcd A=A2𝑜AA×A
5 onfin2 ω=OnFin
6 inss2 OnFinFin
7 5 6 eqsstri ωFin
8 2onn 2𝑜ω
9 7 8 sselii 2𝑜Fin
10 relsdom Rel
11 10 brrelex1i AA⊔︀AAV
12 fidomtri 2𝑜FinAV2𝑜A¬A2𝑜
13 9 11 12 sylancr AA⊔︀A2𝑜A¬A2𝑜
14 xp2dju 2𝑜×A=A⊔︀A
15 xpdom1g AV2𝑜A2𝑜×AA×A
16 11 15 sylan AA⊔︀A2𝑜A2𝑜×AA×A
17 14 16 eqbrtrrid AA⊔︀A2𝑜AA⊔︀AA×A
18 sdomdomtr AA⊔︀AA⊔︀AA×AAA×A
19 17 18 syldan AA⊔︀A2𝑜AAA×A
20 19 ex AA⊔︀A2𝑜AAA×A
21 13 20 sylbird AA⊔︀A¬A2𝑜AA×A
22 21 orrd AA⊔︀AA2𝑜AA×A
23 4 22 jaoi A=AA⊔︀AA2𝑜AA×A
24 isfin5 AFinVA=AA⊔︀A
25 isfin6 AFinVIA2𝑜AA×A
26 23 24 25 3imtr4i AFinVAFinVI