Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for ML
Cartesian exponentiation
finxpeq1
Next ⟩
finxpeq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
finxpeq1
Description:
Equality theorem for Cartesian exponentiation.
(Contributed by
ML
, 19-Oct-2020)
Ref
Expression
Assertion
finxpeq1
⊢
U
=
V
→
U
↑↑
N
=
V
↑↑
N
Proof
Step
Hyp
Ref
Expression
1
eleq2
⊢
U
=
V
→
x
∈
U
↔
x
∈
V
2
1
anbi2d
⊢
U
=
V
→
n
=
1
𝑜
∧
x
∈
U
↔
n
=
1
𝑜
∧
x
∈
V
3
xpeq2
⊢
U
=
V
→
V
×
U
=
V
×
V
4
3
eleq2d
⊢
U
=
V
→
x
∈
V
×
U
↔
x
∈
V
×
V
5
4
ifbid
⊢
U
=
V
→
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
=
if
x
∈
V
×
V
⋃
n
1
st
⁡
x
n
x
6
2
5
ifbieq2d
⊢
U
=
V
→
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
=
if
n
=
1
𝑜
∧
x
∈
V
∅
if
x
∈
V
×
V
⋃
n
1
st
⁡
x
n
x
7
6
mpoeq3dv
⊢
U
=
V
→
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
=
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
V
∅
if
x
∈
V
×
V
⋃
n
1
st
⁡
x
n
x
8
rdgeq1
⊢
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
=
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
V
∅
if
x
∈
V
×
V
⋃
n
1
st
⁡
x
n
x
→
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
N
y
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
V
∅
if
x
∈
V
×
V
⋃
n
1
st
⁡
x
n
x
N
y
9
7
8
syl
⊢
U
=
V
→
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
N
y
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
V
∅
if
x
∈
V
×
V
⋃
n
1
st
⁡
x
n
x
N
y
10
9
fveq1d
⊢
U
=
V
→
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
N
y
⁡
N
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
V
∅
if
x
∈
V
×
V
⋃
n
1
st
⁡
x
n
x
N
y
⁡
N
11
10
eqeq2d
⊢
U
=
V
→
∅
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
N
y
⁡
N
↔
∅
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
V
∅
if
x
∈
V
×
V
⋃
n
1
st
⁡
x
n
x
N
y
⁡
N
12
11
anbi2d
⊢
U
=
V
→
N
∈
ω
∧
∅
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
N
y
⁡
N
↔
N
∈
ω
∧
∅
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
V
∅
if
x
∈
V
×
V
⋃
n
1
st
⁡
x
n
x
N
y
⁡
N
13
12
abbidv
⊢
U
=
V
→
y
|
N
∈
ω
∧
∅
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
N
y
⁡
N
=
y
|
N
∈
ω
∧
∅
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
V
∅
if
x
∈
V
×
V
⋃
n
1
st
⁡
x
n
x
N
y
⁡
N
14
df-finxp
⊢
U
↑↑
N
=
y
|
N
∈
ω
∧
∅
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
N
y
⁡
N
15
df-finxp
⊢
V
↑↑
N
=
y
|
N
∈
ω
∧
∅
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
V
∅
if
x
∈
V
×
V
⋃
n
1
st
⁡
x
n
x
N
y
⁡
N
16
13
14
15
3eqtr4g
⊢
U
=
V
→
U
↑↑
N
=
V
↑↑
N