Metamath Proof Explorer


Theorem fldextid

Description: The field extension relation is reflexive. (Contributed by Thierry Arnoux, 30-Jul-2023)

Ref Expression
Assertion fldextid FFieldF/FldExtF

Proof

Step Hyp Ref Expression
1 eqid BaseF=BaseF
2 1 ressid FFieldF𝑠BaseF=F
3 2 eqcomd FFieldF=F𝑠BaseF
4 isfld FFieldFDivRingFCRing
5 4 simplbi FFieldFDivRing
6 drngring FDivRingFRing
7 1 subrgid FRingBaseFSubRingF
8 5 6 7 3syl FFieldBaseFSubRingF
9 brfldext FFieldFFieldF/FldExtFF=F𝑠BaseFBaseFSubRingF
10 9 anidms FFieldF/FldExtFF=F𝑠BaseFBaseFSubRingF
11 3 8 10 mpbir2and FFieldF/FldExtF