Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Field Extensions
fldextid
Next ⟩
extdgid
Metamath Proof Explorer
Ascii
Unicode
Theorem
fldextid
Description:
The field extension relation is reflexive.
(Contributed by
Thierry Arnoux
, 30-Jul-2023)
Ref
Expression
Assertion
fldextid
⊢
F
∈
Field
→
F
/
FldExt
F
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
F
=
Base
F
2
1
ressid
⊢
F
∈
Field
→
F
↾
𝑠
Base
F
=
F
3
2
eqcomd
⊢
F
∈
Field
→
F
=
F
↾
𝑠
Base
F
4
isfld
⊢
F
∈
Field
↔
F
∈
DivRing
∧
F
∈
CRing
5
4
simplbi
⊢
F
∈
Field
→
F
∈
DivRing
6
drngring
⊢
F
∈
DivRing
→
F
∈
Ring
7
1
subrgid
⊢
F
∈
Ring
→
Base
F
∈
SubRing
⁡
F
8
5
6
7
3syl
⊢
F
∈
Field
→
Base
F
∈
SubRing
⁡
F
9
brfldext
⊢
F
∈
Field
∧
F
∈
Field
→
F
/
FldExt
F
↔
F
=
F
↾
𝑠
Base
F
∧
Base
F
∈
SubRing
⁡
F
10
9
anidms
⊢
F
∈
Field
→
F
/
FldExt
F
↔
F
=
F
↾
𝑠
Base
F
∧
Base
F
∈
SubRing
⁡
F
11
3
8
10
mpbir2and
⊢
F
∈
Field
→
F
/
FldExt
F