Metamath Proof Explorer


Theorem fldextid

Description: The field extension relation is reflexive. (Contributed by Thierry Arnoux, 30-Jul-2023)

Ref Expression
Assertion fldextid F Field F /FldExt F

Proof

Step Hyp Ref Expression
1 eqid Base F = Base F
2 1 ressid F Field F 𝑠 Base F = F
3 2 eqcomd F Field F = F 𝑠 Base F
4 isfld F Field F DivRing F CRing
5 4 simplbi F Field F DivRing
6 drngring F DivRing F Ring
7 1 subrgid F Ring Base F SubRing F
8 5 6 7 3syl F Field Base F SubRing F
9 brfldext F Field F Field F /FldExt F F = F 𝑠 Base F Base F SubRing F
10 9 anidms F Field F /FldExt F F = F 𝑠 Base F Base F SubRing F
11 3 8 10 mpbir2and F Field F /FldExt F