Metamath Proof Explorer


Theorem fldextsdrg

Description: Deduce sub-division-ring from field extension. (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses fldextsdrg.1 B = Base F
fldextsdrg.2 φ E /FldExt F
Assertion fldextsdrg φ B SubDRing E

Proof

Step Hyp Ref Expression
1 fldextsdrg.1 B = Base F
2 fldextsdrg.2 φ E /FldExt F
3 fldextfld1 E /FldExt F E Field
4 2 3 syl φ E Field
5 4 flddrngd φ E DivRing
6 1 fldextsubrg E /FldExt F B SubRing E
7 2 6 syl φ B SubRing E
8 fldextress E /FldExt F F = E 𝑠 Base F
9 2 8 syl φ F = E 𝑠 Base F
10 1 oveq2i E 𝑠 B = E 𝑠 Base F
11 9 10 eqtr4di φ F = E 𝑠 B
12 fldextfld2 E /FldExt F F Field
13 2 12 syl φ F Field
14 11 13 eqeltrrd φ E 𝑠 B Field
15 14 flddrngd φ E 𝑠 B DivRing
16 issdrg B SubDRing E E DivRing B SubRing E E 𝑠 B DivRing
17 5 7 15 16 syl3anbrc φ B SubDRing E