Metamath Proof Explorer


Theorem flfneii

Description: A neighborhood of a limit point of a function contains the image of a filter element. (Contributed by Jeff Hankins, 11-Nov-2009) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis flfneii.x X=J
Assertion flfneii JTopLFilYF:YXAJfLimfLFNneiJAsLFsN

Proof

Step Hyp Ref Expression
1 flfneii.x X=J
2 1 toptopon JTopJTopOnX
3 flfnei JTopOnXLFilYF:YXAJfLimfLFAXnneiJAsLFsn
4 2 3 syl3an1b JTopLFilYF:YXAJfLimfLFAXnneiJAsLFsn
5 4 simplbda JTopLFilYF:YXAJfLimfLFnneiJAsLFsn
6 5 3adant3 JTopLFilYF:YXAJfLimfLFNneiJAnneiJAsLFsn
7 sseq2 n=NFsnFsN
8 7 rexbidv n=NsLFsnsLFsN
9 8 rspcv NneiJAnneiJAsLFsnsLFsN
10 9 3ad2ant3 JTopLFilYF:YXAJfLimfLFNneiJAnneiJAsLFsnsLFsN
11 6 10 mpd JTopLFilYF:YXAJfLimfLFNneiJAsLFsN