Metamath Proof Explorer


Theorem isflf

Description: The property of being a limit point of a function. (Contributed by Jeff Hankins, 8-Nov-2009) (Revised by Stefan O'Rear, 7-Aug-2015)

Ref Expression
Assertion isflf JTopOnXLFilYF:YXAJfLimfLFAXoJAosLFso

Proof

Step Hyp Ref Expression
1 flfval JTopOnXLFilYF:YXJfLimfLF=JfLimXFilMapFL
2 1 eleq2d JTopOnXLFilYF:YXAJfLimfLFAJfLimXFilMapFL
3 simp1 JTopOnXLFilYF:YXJTopOnX
4 toponmax JTopOnXXJ
5 4 3ad2ant1 JTopOnXLFilYF:YXXJ
6 filfbas LFilYLfBasY
7 6 3ad2ant2 JTopOnXLFilYF:YXLfBasY
8 simp3 JTopOnXLFilYF:YXF:YX
9 fmfil XJLfBasYF:YXXFilMapFLFilX
10 5 7 8 9 syl3anc JTopOnXLFilYF:YXXFilMapFLFilX
11 flimopn JTopOnXXFilMapFLFilXAJfLimXFilMapFLAXoJAooXFilMapFL
12 3 10 11 syl2anc JTopOnXLFilYF:YXAJfLimXFilMapFLAXoJAooXFilMapFL
13 toponss JTopOnXoJoX
14 3 13 sylan JTopOnXLFilYF:YXoJoX
15 elfm XJLfBasYF:YXoXFilMapFLoXsLFso
16 5 7 8 15 syl3anc JTopOnXLFilYF:YXoXFilMapFLoXsLFso
17 16 adantr JTopOnXLFilYF:YXoJoXFilMapFLoXsLFso
18 14 17 mpbirand JTopOnXLFilYF:YXoJoXFilMapFLsLFso
19 18 imbi2d JTopOnXLFilYF:YXoJAooXFilMapFLAosLFso
20 19 ralbidva JTopOnXLFilYF:YXoJAooXFilMapFLoJAosLFso
21 20 anbi2d JTopOnXLFilYF:YXAXoJAooXFilMapFLAXoJAosLFso
22 2 12 21 3bitrd JTopOnXLFilYF:YXAJfLimfLFAXoJAosLFso