Description: A limit point of a filter is a limit point of a finer filter. (Contributed by Jeff Hankins, 5-Sep-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | flimss2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | flimelbas | |
3 | 2 | adantl | |
4 | simpl1 | |
|
5 | toponuni | |
|
6 | 4 5 | syl | |
7 | 3 6 | eleqtrrd | |
8 | flimneiss | |
|
9 | 8 | adantl | |
10 | simpl3 | |
|
11 | 9 10 | sstrd | |
12 | simpl2 | |
|
13 | elflim | |
|
14 | 4 12 13 | syl2anc | |
15 | 7 11 14 | mpbir2and | |
16 | 15 | ex | |
17 | 16 | ssrdv | |