Metamath Proof Explorer


Theorem flimss2

Description: A limit point of a filter is a limit point of a finer filter. (Contributed by Jeff Hankins, 5-Sep-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Assertion flimss2 JTopOnXFFilXGFJfLimGJfLimF

Proof

Step Hyp Ref Expression
1 eqid J=J
2 1 flimelbas xJfLimGxJ
3 2 adantl JTopOnXFFilXGFxJfLimGxJ
4 simpl1 JTopOnXFFilXGFxJfLimGJTopOnX
5 toponuni JTopOnXX=J
6 4 5 syl JTopOnXFFilXGFxJfLimGX=J
7 3 6 eleqtrrd JTopOnXFFilXGFxJfLimGxX
8 flimneiss xJfLimGneiJxG
9 8 adantl JTopOnXFFilXGFxJfLimGneiJxG
10 simpl3 JTopOnXFFilXGFxJfLimGGF
11 9 10 sstrd JTopOnXFFilXGFxJfLimGneiJxF
12 simpl2 JTopOnXFFilXGFxJfLimGFFilX
13 elflim JTopOnXFFilXxJfLimFxXneiJxF
14 4 12 13 syl2anc JTopOnXFFilXGFxJfLimGxJfLimFxXneiJxF
15 7 11 14 mpbir2and JTopOnXFFilXGFxJfLimGxJfLimF
16 15 ex JTopOnXFFilXGFxJfLimGxJfLimF
17 16 ssrdv JTopOnXFFilXGFJfLimGJfLimF